Skip to main content
Log in

A solution-processed nanoscale COF-like material towards optoelectronic applications

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) covalent organic frameworks (COFs) with periodic functional n-electron systems are an emerging class of optoelectronic materials. However, almost all conjugated COFs so far are insoluble and hard to process, which hampers severely their optoelectronic applications. Here, a solution-processable, nanoscale and sp2 carbon-conjugated COF-like material, PDPP-C20 was successfully designed and synthesized. The solution-processed PDPP-C20 films exhibit high crystallinity and excellent charge transport properties along out-of-plane directions, combined with the highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of −5.36/−3.75 eV, making PDPP-C20 suitable for electronic device applications. An efficiency as high as 21.92% has been demonstrated when it was used as a functional interfacial layer in perovskite solar cells, coupled with dramatically improved stability in comparison with the control device due to the superior hydrophobicity of PDPP-C20 layer as well as its passivation effect on perovskite surface. Furthermore, the soluble PDPP-C20 could also be used as donor in bulk-heterojunction organic solar cells and an initial efficiency of 2.46% has been achieved. These results indicate that this new class of soluble and nanoscale COF-like materials should offer a new arena of functional materials for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568

    CAS  PubMed  Google Scholar 

  2. Huang N, Wang P, Jiang D. Nat Rev Mater, 2016, 1: 16086

    Google Scholar 

  3. Waller PJ, Gándara F, Yaghi OM. Acc Chem Res, 2015, 48: 3053–3063

    CAS  PubMed  Google Scholar 

  4. Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W. Chem Soc Rev, 2019, 48: 488–516

    CAS  PubMed  Google Scholar 

  5. Kandambeth S, Dey K, Banerjee R. J Am Chem Soc, 2019, 141: 1807–1822

    CAS  PubMed  Google Scholar 

  6. Song Y, Sun Q, Aguila B, Ma S. Adv Sci, 2019, 6: 1801410

    Google Scholar 

  7. Chen X, Geng K, Liu R, Tan KT, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Angew Chem Int Ed, 2020, 59: 5050–5091

    CAS  Google Scholar 

  8. Chen L, Furukawa K, Gao J, Nagai A, Nakamura T, Dong Y, Jiang D. J Am Chem Soc, 2014, 136: 9806–9809

    CAS  PubMed  Google Scholar 

  9. Babu HV, Bai MGM, Rajeswara Rao M. ACS Appl Mater Interfaces, 2019, 11: 11029–11060

    CAS  PubMed  Google Scholar 

  10. Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115: 12633–12665

    CAS  PubMed  Google Scholar 

  11. Xu Y, Yao H, Hou J. Chin J Chem, 2019, 37: 207–215

    CAS  Google Scholar 

  12. Wan X, Li C, Zhang M, Chen Y. Chem Soc Rev, 2020, 49: 2828–2842

    CAS  PubMed  Google Scholar 

  13. Kim GW, Lee J, Kang G, Kim T, Park T. Adv Energy Mater, 2018, 8: 1701935

    Google Scholar 

  14. Zhang F, Yao Z, Guo Y, Li Y, Bergstrand J, Brett CJ, Cai B, Hajian A, Guo Y, Yang X, Gardner JM, Widengren J, Roth SV, Kloo L, Sun L. J Am Chem Soc, 2019, 141: 19700–19707

    CAS  PubMed  Google Scholar 

  15. Meng L, Sun C, Wang R, Huang W, Zhao Z, Sun P, Huang T, Xue J, Lee JW, Zhu C, Huang Y, Li Y, Yang Y. J Am Chem Soc, 2018, 140: 17255–17262

    CAS  PubMed  Google Scholar 

  16. Bi D, Yi C, Luo J, Décoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M. Nat Energy, 2016, 1: 16142

    CAS  Google Scholar 

  17. Gutzler R, Perepichka DF. J Am Chem Soc, 2013, 135: 16585–16594

    CAS  PubMed  Google Scholar 

  18. Wen J, Luo D, Cheng L, Zhao K, Ma H. Macromolecules, 2016, 49: 1305–1312

    CAS  Google Scholar 

  19. Ding X, Chen L, Honsho Y, Feng X, Saengsawang O, Guo J, Saeki A, Seki S, Irle S, Nagase S, Parasuk V, Jiang D. J Am Chem Soc, 2011, 133: 14510–14513

    CAS  PubMed  Google Scholar 

  20. Calik M, Auras F, Salonen LM, Bader K, Grill I, Handloser M, Medina DD, Dogru M, Löbermann F, Trauner D, Hartschuh A, Bein T. J Am Chem Soc, 2014, 136: 17802–17807

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Zeng C, Xu H, Yin P, Chen D, Deng J, Li M, Zheng N, Gu C, Ma Y. Chem Sci, 2019, 10: 1023–1028

    CAS  PubMed  Google Scholar 

  22. Peng P, Shi L, Huo F, Zhang S, Mi C, Cheng Y, Xiang Z. ACS Nano, 2019, 13: 878–884

    PubMed  Google Scholar 

  23. Li W, Hendriks KH, Wienk MM, Janssen RAJ. Acc Chem Res, 2016, 49: 78–85

    CAS  PubMed  Google Scholar 

  24. Tseng HR, Phan H, Luo C, Wang M, Perez LA, Patel SN, Ying L, Kramer EJ, Nguyen TQ, Bazan GC, Heeger AJ. Adv Mater, 2014, 26: 2993–2998

    CAS  PubMed  Google Scholar 

  25. Kim MS, Lee WJ, Paek SM, Park JK. ACS Appl Mater Interfaces, 2018, 10: 32102–32111

    CAS  PubMed  Google Scholar 

  26. Kim MS, Phang CS, Jeong YK, Park JK. Polym Chem, 2017, 8: 5655–5659

    CAS  Google Scholar 

  27. Gole B, Stepanenko V, Rager S, Grüne M, Medina DD, Bein T, Würthner F, Beuerle F. Angew Chem Int Ed, 2018, 57: 846–850

    CAS  Google Scholar 

  28. Rager S, Jakowetz AC, Gole B, Beuerle F, Medina DD, Bein T. Chem Mater, 2019, 31: 2707–2712

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng YJ, Yang SH, Hsu CS. Chem Rev, 2009, 109: 5868–5923

    CAS  PubMed  Google Scholar 

  30. Huang Y, Guo X, Liu F, Huo L, Chen Y, Russell TP, Han CC, Li Y, Hou J. Adv Mater, 2012, 24: 3383–3389

    CAS  PubMed  Google Scholar 

  31. Yi Z, Wang S, Liu Y. Adv Mater, 2015, 27: 3589–3606

    CAS  PubMed  Google Scholar 

  32. Zhang Z, Zhang S, Min J, Cui C, Geng H, Shuai Z, Li Y. Macromolecules, 2012, 45: 2312–2320

    CAS  Google Scholar 

  33. Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137: 14149–14157

    CAS  PubMed  Google Scholar 

  34. Chen MS, Lee OP, Niskala JR, Yiu AT, Tassone CJ, Schmidt K, Beaujuge PM, Onishi SS, Toney MF, Zettl A, Fréchet JMJ. J Am Chem Soc, 2013, 135: 19229–19236

    CAS  PubMed  Google Scholar 

  35. Zhou D, Tan X, Wu H, Tian L, Li M. Angew Chem Int Ed, 2019, 58: 1376–1381

    CAS  Google Scholar 

  36. Burke DW, Sun C, Castano I, Flanders NC, Evans AM, Vitaku E, McLeod DC, Lambeth RH, Chen LX, Gianneschi NC, Dichtel WR. Angew Chem Int Ed, 2020, 59: 5165–5171

    CAS  Google Scholar 

  37. Xu H, Gao J, Jiang D. Nat Chem, 2015, 7: 905–912

    CAS  PubMed  Google Scholar 

  38. Shao P, Li J, Chen F, Ma L, Li Q, Zhang M, Zhou J, Yin A, Feng X, Wang B. Angew Chem, 2018, 130: 16501–16505

    Google Scholar 

  39. Zhang G, Hong YL, Nishiyama Y, Bai S, Kitagawa S, Horike S. J Am Chem Soc, 2019, 141: 1227–1234

    CAS  PubMed  Google Scholar 

  40. Lv J, Tan YX, Xie J, Yang R, Yu M, Sun S, Li MD, Yuan D, Wang Y. Angew Chem Int Ed, 2018, 57: 12716–12720

    CAS  Google Scholar 

  41. Bi S, Yang C, Zhang W, Xu J, Liu L, Wu D, Wang X, Han Y, Liang Q, Zhang F. Nat Commun, 2019, 10: 2467

    PubMed  PubMed Central  Google Scholar 

  42. Zhao Y, Liu H, Wu C, Zhang Z, Pan Q, Hu F, Wang R, Li P, Huang X, Li Z. Angew Chem Int Ed, 2019, 58: 5376–5381

    CAS  Google Scholar 

  43. Wu Y, Schneider S, Walter C, Chowdhury AH, Bahrami B, Wu HC, Qiao Q, Toney MF, Bao Z. J Am Chem Soc, 2020, 142: 392–406

    CAS  PubMed  Google Scholar 

  44. Pham HD, Yang TC, Jain SM, Wilson GJ, Sonar P. Adv Energy Mater, 2020, 10: 1903326

    CAS  Google Scholar 

  45. Kim G, Choi H, Kim M, Lee J, Son SY, Park T. Adv Energy Mater, 2020, 10: 1903403

    CAS  Google Scholar 

  46. Stolterfoht M, Wolff CM, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P, Neher D. Energy Environ Sci, 2017, 10: 1530–1539

    CAS  Google Scholar 

  47. Zuo L, Guo H, deQuilettes DW, Jariwala S, De Marco N, Dong S, DeBlock R, Ginger DS, Dunn B, Wang M, Yang Y. Sci Adv, 2017, 3: e1700106

    PubMed  PubMed Central  Google Scholar 

  48. Li F, Yuan J, Ling X, Zhang Y, Yang Y, Cheung SH, Ho CHY, Gao X, Ma W. Adv Funct Mater, 2018, 28: 1706377

    Google Scholar 

  49. Chaudhary B, Kulkarni A, Jena AK, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T. ChemSusChem, 2017, 10: 2473–2479

    CAS  PubMed  Google Scholar 

  50. Qin PL, Yang G, Ren ZW, Cheung SH, So SK, Chen L, Hao J, Hou J, Li G. Adv Mater, 2018, 30: 1706126

    Google Scholar 

  51. Yu B, Zhang L, Wu J, Liu K, Wu H, Shi J, Luo Y, Li D, Bo Z, Meng Q. J Mater Chem A, 2020, 8: 1417–1424

    CAS  Google Scholar 

  52. Ji X, Zhou T, Ke X, Wang W, Wu S, Zhang M, Lu D, Zhang X, Liu Y. J Mater Chem A, 2020, 8: 5163–5170

    CAS  Google Scholar 

  53. Lu J, Chen SC, Zheng Q. Sci China Chem, 2019, 62: 1044–1050

    CAS  Google Scholar 

  54. Yu D, Hu Y, Shi J, Tang H, Zhang W, Meng Q, Han H, Ning Z, Tian H. Sci China Chem, 2019, 62: 684–707

    CAS  Google Scholar 

  55. Zhou T, Lai H, Liu T, Lu D, Wan X, Zhang X, Liu Y, Chen Y. Adv Mater, 2019, 31: 1901242

    Google Scholar 

  56. Gao B, Yao H, Hong L, Hou J. Chin J Chem, 2019, 37: 1153–1157

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51673097, 21875122) and Ministry of Science and Technology of China (2016YFA0200200, 2019YFA0705903). The authors would like to thank Prof. Y. C. Zhou in Sun Yat-sen University for the discussion of materials calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Wang, T., Sun, Y. et al. A solution-processed nanoscale COF-like material towards optoelectronic applications. Sci. China Chem. 64, 82–91 (2021). https://doi.org/10.1007/s11426-020-9865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9865-3

Navigation