Skip to main content
Log in

Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Focused oxidative stress of the specific organelles (e.g., endoplasmic reticulum (ER) and mitochondrion) of cancer cells can boost the immunogenic cell death (ICD) effect for cancer immunotherapy. Herein, an ER-targeted bioprobe with aggregation-induced emission (AIE) characteristics (TPE-PR-FFKDEL) was rationally designed and synthesized by integrating a new AIE photosensitizer with ER targeting peptide, which has been demonstrated to be able to efficiently induce ER oxidative stress to evoke ICD. Compared with the photosensitizer hypericin that is well-known as an ER-targeted ICD inducer, TPE-PR-FFKDEL can lead to more robust emission of immunostimulatory damage-associated molecular patterns such as surface-exposed cal-reticulin, ATP secretion, and high-mobility group protein B1 (HMGB1) and heat shock protein 70 (HSP 70) expression. Furthermore, a range of immune responses are activated to protect mice from the attack of cancer cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ott PA, Hodi FS, Robert C. Clin Cancer Res, 2013, 19: 5300–5309

    PubMed  CAS  Google Scholar 

  2. Spranger S, Bao R, Gajewski TF. Nature, 2015, 523: 231–235

    PubMed  CAS  Google Scholar 

  3. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Annu Rev Immunol, 2013, 31: 51–72

    PubMed  CAS  Google Scholar 

  4. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Nat Rev Cancer, 2012, 12: 860–875

    PubMed  CAS  Google Scholar 

  5. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G. Nat Med, 2007, 13: 54–61

    PubMed  CAS  Google Scholar 

  6. Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. OncoImmunology, 2015, 4: e1008866

    PubMed  PubMed Central  Google Scholar 

  7. Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. OncoImmunology, 2014, 3: e27878

    PubMed  PubMed Central  Google Scholar 

  8. Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J, Ren H, Leong KW, Nie G. Biomaterials, 2016, 102: 187–197

    PubMed  CAS  Google Scholar 

  9. Ni D, Ferreira CA, Barnhart TE, Quach V, Yu B, Jiang D, Wei W, Liu H, Engle JW, Hu P, Cai W. J Am Chem Soc, 2018, 140: 14971–14979

    PubMed  PubMed Central  Google Scholar 

  10. Yang G, Xu L, Xu J, Zhang R, Song G, Chao Y, Feng L, Han F, Dong Z, Li B, Liu Z. Nano Lett, 2018, 18: 2475–2484

    PubMed  CAS  Google Scholar 

  11. Duan X, Chan C, Lin W. Angew Chem Int Ed, 2019, 58: 670–680

    CAS  Google Scholar 

  12. Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Agostinis P. Sci Transl Med, 2016, 8: 328ra27

    PubMed  Google Scholar 

  13. Liang R, Liu L, He H, Chen Z, Han Z, Luo Z, Wu Z, Zheng M, Ma Y, Cai L. Biomaterials, 2018, 177: 149–160

    PubMed  CAS  Google Scholar 

  14. Korbelik M. Lasers Surg Med, 2018, 50: 491–498

    PubMed  Google Scholar 

  15. Chen Z, Liu L, Liang R, Luo Z, He H, Wu Z, Tian H, Zheng M, Ma Y, Cai L. ACS Nano, 2018, 12: 8633–8645

    PubMed  CAS  Google Scholar 

  16. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, Lin W. Nat Commun, 2016, 7: 12499

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W. Am Chem Soc, 2018, 140: 5670–5673

    CAS  Google Scholar 

  18. Zhang X, Wang J, Chen Z, Hu Q, Wang C, Yan J, Dotti G, Huang P, Gu Z. Nano Lett, 2018, 18: 5716–5725

    PubMed  CAS  Google Scholar 

  19. Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Nat Commun, 2017, 8: 902

    PubMed  PubMed Central  Google Scholar 

  20. Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Adv Mater, 2019, 31: 1904914

    CAS  Google Scholar 

  21. Fan W, Huang P, Chen X. Chem Soc Rev, 2016, 45: 6488–6519

    PubMed  CAS  Google Scholar 

  22. Lovell JF, Liu TWB, Chen J, Zheng G. Chem Rev, 2010, 110: 2839–2857

    PubMed  CAS  Google Scholar 

  23. Feng G, Liu B. Acc Chem Res, 2018, 51: 1404–1414

    PubMed  CAS  Google Scholar 

  24. Chen C, Ou H, Liu R, Ding D. Adv Mater, 2020, 32: 1806331

    CAS  Google Scholar 

  25. Zhou Y, Liu H, Zhao N, Wang Z, Michael MZ, Xie N, Tang BZ, Tang Y. Sci China Chem, 2018, 61: 892–897

    CAS  Google Scholar 

  26. Ding S, Liu M, Hong Y. Sci China Chem, 2018, 61: 882–891

    CAS  Google Scholar 

  27. Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413–1422

    CAS  Google Scholar 

  28. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    PubMed  CAS  Google Scholar 

  29. Baysec S, Minotto A, Klein P, Poddi S, Zampetti A, Allard S, Cacialli F, Scherf U. Sci China Chem, 2018, 61: 932–939

    CAS  Google Scholar 

  30. Ou H, Dai S, Liu R, Ding D. Sci China Chem, 2019, 62: 929–932

    CAS  Google Scholar 

  31. Ni X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Nano Lett, 2019, 19: 318–330

    PubMed  CAS  Google Scholar 

  32. Shimizu M, Nakatani M, Nishimura K. Sci China Chem, 2018, 61: 925–931

    CAS  Google Scholar 

  33. Wang Z, Zhou F, Wang J, Zhao Z, Qin A, Yu Z, Tang BZ. Sci China Chem, 2018, 61: 76–87

    CAS  Google Scholar 

  34. Chen C, Ni X, Tian H, Liu Q, Guo D, Ding D. Angew Chem Int Ed, 2020, 59: 10008–10012

    CAS  Google Scholar 

  35. Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Nat Commun, 2018, 9: 1848

    PubMed  PubMed Central  Google Scholar 

  36. Qi J, Chen C, Ding D, Tang BZ. Adv Healthc Mater, 2018, 7: 1800477

    Google Scholar 

  37. Gao H, Zhang X, Chen C, Li K, Ding D. Adv Health Mater, 2018, 2: 1800074

    Google Scholar 

  38. Gao Z, Gao H, Zheng D, Xu T, Chen Y, Liang C, Wang L, Ding D, Yang Z. Sci China Chem, 2020, 63: 398–403

    CAS  Google Scholar 

  39. Galluzzi L, Yamazaki T, Kroemer G. Nat Rev Mol Cell Biol, 2018, 19: 731–745

    PubMed  CAS  Google Scholar 

  40. Zhang CJ, Cai X, Xu S, Zhan R, Jien W, Liu B. Chem Commun, 2017, 53: 10792–10795

    CAS  Google Scholar 

  41. Chen X, Gao H, Deng Y, Jin Q, Ji J, Ding D. ACS Nano, 2020, 14: 5121–5134

    PubMed  CAS  Google Scholar 

  42. Xu S, Yuan Y, Cai X, Zhang CJ, Hu F, Liang J, Zhang G, Zhang D, Liu B. Chem Sci, 2015, 6: 5824–5830

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJE, Hart DNJ, Radford KJ. J Exp Med, 2010, 207: 1247–1260

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, Schlemmer F, Zitvogel L, Kroemer G. Curr Opin Immunol, 2008, 20: 504–511

    PubMed  CAS  Google Scholar 

  45. Kaech SM, Wherry EJ, Ahmed R. Nat Rev Immunol, 2002, 2: 251–262

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873092, 51961160730), the National Key R&D Program of China (Intergovernmental Cooperation Project, 2017YFE0132200), Tianjin Science Fund for Distinguished Young Scholars (19JCJQJC61200) and the Fundamental Research Funds for the Central Universities, Nankai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruihua Liu, Qian Liu or Dan Ding.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gao, H., Liu, R. et al. Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death. Sci. China Chem. 63, 1428–1434 (2020). https://doi.org/10.1007/s11426-020-9846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9846-4

Keywords

Navigation