Skip to main content
Log in

4-Tert-butylpyridine-assisted low-cost and soluble copper phthalocyanine as dopant-free hole transport layer for efficient Pb- and Sn-based perovskite solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The preparation of suitable hole transport material (HTM) is critical to the performance and stability of perovskite solar cells (PSCs) with low-cost. Herein, a mass producible and soluble copper phthalocyanine decorated with butoxy donor groups (CuPc-OBu) was designed as HTM and prepared by a facile two-step synthetic route. To generate high quality HTM film, 4-tertbutylpyridine (tBP) was doped into CuPc-OBu to prepare the film and then removed by annealing. Such a tBP-assisted strategy resulted in the best efficiency of the PSCs with lead trihalide perovskite up to 19.0% (small-area of 0.1 cm2) and 10.1% (the active area of 8.0 cm2 for the module device). And the best efficiency of the tin-based PSCs with CuPc-OBu reached to 6.9%. More importantly, the device with CuPc-OBu as HTM revealed the remarkably enhanced stability. This work provides a new strategy to improve the film-quality of free-doping HTMs and enhance the efficiency and stability of Pb- and Sn-based PSCs with low-cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Han L. Sci China Chem, 2019, 62: 822–828

    CAS  Google Scholar 

  2. Snaith HJ. Nat Mater, 2018, 17: 372–376

    PubMed  CAS  Google Scholar 

  3. Ye Q, Zhao Y, Mu S, Gao P, Zhang X, You J. Sci China Chem, 2019, 62: 810–821

    CAS  Google Scholar 

  4. Min H, Kim M, Lee SU, Kim H, Kim G, Choi K, Lee JH, Seok SI. Science, 2019, 366: 749–753

    PubMed  CAS  Google Scholar 

  5. Correa-Baena JP, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Grätzel M, Hagfeldt A. Energy Environ Sci, 2017, 10: 710–727

    CAS  Google Scholar 

  6. Yuan J, Jiang Y, He T, Shi G, Fan Z, Yuan M. Sci China Chem, 2019, 62: 629–636

    CAS  Google Scholar 

  7. https://www.nrel.gov/pv/cell-efficiency.html

  8. Yu Z, Sun L. Adv Energy Mater, 2015, 5: 1500213

    Google Scholar 

  9. Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M. Science, 2017, 768–771

    Google Scholar 

  10. You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2016, 11: 75–81

    Google Scholar 

  11. Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena JP, Gao P, Scopelliti R, Mosconi E, Dahmen KH, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK. Nat Energy, 2016, 15017

    Google Scholar 

  12. Li Z, Klein TR, Kim DH, Yang M, Berry JJ, van Hest MFAM, Zhu K. Nat Rev Mater, 2018, 18017

    Google Scholar 

  13. Li X, Li C, Wu Y, Cao J, Yu Tang. Sci China Chem, 2020, doi: 10.1007/s11426-020-9710-7

    Google Scholar 

  14. Cao J, Lv X, Zhang P, Chuong TT, Wu B, Feng X, Shan C, Liu J, Tang Y. Adv Mater, 2018, 30: 1800568

    Google Scholar 

  15. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897–903

    PubMed  CAS  Google Scholar 

  16. Jiang X, Wang D, Yu Z, Ma W, Li HB, Yang X, Liu F, Hagfeldt A, Sun L. Adv Energy Mater, 2018, 9: 1803287

    Google Scholar 

  17. Cheng M, Li Y, Safdari M, Chen C, Liu P, Kloo L, Sun L. Adv Energy Mater, 2017, 7: 1602556

    Google Scholar 

  18. Duong T, Peng J, Walter D, Xiang J, Shen H, Chugh D, Lockrey M, Zhong D, Li J, Weber K, White TP, Catchpole KR. ACS Energy Lett, 2018, 3: 2441–2448

    CAS  Google Scholar 

  19. Liu X, Wang Y, Rezaee E, Chen Q, Feng Y, Sun X, Dong L, Hu Q, Li C, Xu ZX. Sol RRL, 2018, 2: 1800050

    Google Scholar 

  20. Wang JM, Wang ZK, Li M, Zhang CC, Jiang LL, Hu KH, Ye QQ, Liao LS. Adv Energy Mater, 2018, 8: 1701688

    Google Scholar 

  21. Jiang X, Yu Z, Lai J, Zhang Y, Hu M, Lei N, Wang D, Yang X, Sun L. ChemSusChem, 2017, 1838–1845

    Google Scholar 

  22. Walzer K, Maennig B, Pfeiffer M, Leo K. Chem Rev, 2007, 107: 1233–1271

    PubMed  CAS  Google Scholar 

  23. Lüssem B, Keum CM, Kasemann D, Naab B, Bao Z, Leo K. Chem Rev, 2016, 116: 13714–13751

    PubMed  Google Scholar 

  24. Wang S, Huang Z, Wang X, Li Y, Günther M, Valenzuela S, Parikh P, Cabreros A, Xiong W, Meng YS. J Am Chem Soc, 2018, 140: 16720–16730

    PubMed  CAS  Google Scholar 

  25. Christians JA, Miranda Herrera PA, Kamat PV. J Am Chem Soc, 2015, 137: 1530–1538

    PubMed  CAS  Google Scholar 

  26. Cao J, Wu B, Chen R, Wu Y, Hui Y, Mao BW, Zheng N. Adv Mater, 2018, 30: 1705596

    Google Scholar 

  27. Li C, Yin J, Chen R, Lv X, Feng X, Wu Y, Cao J. J Am Chem Soc, 2019, 141: 6345–6351

    PubMed  CAS  Google Scholar 

  28. Cao J, Li C, Lv X, Feng X, Meng R, Wu Y, Tang Y. J Am Chem Soc, 2018, 140: 11577–11580

    PubMed  CAS  Google Scholar 

  29. Feng X, Chen R, Nan ZA, Lv X, Meng R, Cao J, Tang Y. Adv Sci, 2019, 6: 1802040

    Google Scholar 

  30. Ke W, Stoumpos CC, Spanopoulos I, Mao L, Chen M, Wasielewski MR, Kanatzidis MG. J Am Chem Soc, 2017, 139: 14800–14806

    PubMed  CAS  Google Scholar 

  31. Osedach TP, Andrew TL, Bulović V. Energy Environ Sci, 2013, 6: 711–718

    CAS  Google Scholar 

  32. Zhang J, Sun Q, Chen Q, Wang Y, Zhou Y, Song B, Yuan N, Ding J, Li Y. Adv Funct Mater, 2019, 29: 1900484

    Google Scholar 

  33. Cao J, Jing X, Yan J, Hu C, Chen R, Yin J, Li J, Zheng N. J Am Chem Soc, 2016, 138: 9919–9926

    PubMed  CAS  Google Scholar 

  34. Rodríguez-Seco C, Cabau L, Vidal-Ferran A, Palomares E. Acc Chem Res, 2018, 51: 869–880

    PubMed  Google Scholar 

  35. Wang S, Sina M, Parikh P, Uekert T, Shahbazian B, Devaraj A, Meng YS. Nano Lett, 2016, 16: 5594–5600

    PubMed  CAS  Google Scholar 

  36. Urieta-Mora J, García-Benito I, Molina-Ontoria A, Martín N. Chem Soc Rev, 2018, 47: 8541–8571

    PubMed  CAS  Google Scholar 

  37. Yue Y, Salim NT, Wu Y, Yang X, Islam A, Chen W, Liu J, Bi E, Xie F, Cai M, Han L. Adv Mater, 2016, 28: 10738–10743

    PubMed  CAS  Google Scholar 

  38. Shahvaranfard F, Altomare M, Hou Y, Hejazi S, Meng W, Osuagwu B, Li N, Brabec CJ, Schmuki P. Adv Funct Mater, 2020, 30: 1909738

    CAS  Google Scholar 

  39. Cao J, Liu YM, Jing X, Yin J, Li J, Xu B, Tan YZ, Zheng N. J Am Chem Soc, 2015, 137: 10914–10917

    PubMed  CAS  Google Scholar 

  40. Ge QQ, Shao JY, Ding J, Deng LY, Zhou WK, Chen YX, Ma JY, Wan LJ, Yao J, Hu JS, Zhong YW. Angew Chem Int Ed, 2018, 10959–10965

    Google Scholar 

  41. Zheng Z, Awartani OM, Gautam B, Liu D, Qin Y, Li W, Bataller A, Gundogdu K, Ade H, Hou J. Adv Mater, 2017, 29: 1604241

    Google Scholar 

  42. Qian D, Zheng Z, Yao H, Tress W, Hopper TR, Chen S, Li S, Liu J, Chen S, Zhang J, Liu XK, Gao B, Ouyang L, Jin Y, Pozina G, Buyanova IA, Chen WM, Inganäs O, Coropceanu V, Bredas JL, Yan H, Hou J, Zhang F, Bakulin AA, Gao F. Nat Mater, 2018, 17: 703–709

    PubMed  CAS  Google Scholar 

  43. Wu T, Liu X, He X, Wang Y, Meng X, Noda T, Yang X, Han L. Sci China Chem, 2020, 63: 107–115

    CAS  Google Scholar 

  44. Liao W, Zhao D, Yu Y, Grice CR, Wang C, Cimaroli AJ, Schulz P, Meng W, Zhu K, Xiong RG, Yan Y. Adv Mater, 2016, 28: 9333–9340

    PubMed  CAS  Google Scholar 

  45. Ma L, Hao F, Stoumpos CC, Phelan BT, Wasielewski MR, Kanatzidis MG. J Am Chem Soc, 2016, 138: 14750–14755

    PubMed  CAS  Google Scholar 

  46. Tai Q, Guo X, Tang G, You P, Ng TW, Shen D, Cao J, Liu CK, Wang N, Zhu Y, Lee CS, Yan F. Angew Chem Int Ed, 2019, 131: 806–810

    Google Scholar 

  47. Vegiraju S, Ke W, Priyanka P, Ni J-, Wu Y-, Spanopoulos I, Yau SL, Marks TJ, Chen M-, Kanatzidis MG. Adv Funct Mater, 2019, 29: 1905393

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (21801104 and 21871121), the Fundamental Research Funds for the Central Universities of China (lzujbky-2019-sp01 and lzujbky-2018-ot01), and the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province (2019ZX-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Cao, Jun Yin or Yu Tang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting information for

11426_2020_9725_MOESM1_ESM.docx

4-Tert-butylpyridine-Assisted low-cost and soluble Copper Phthalocyanine as Dopant-Free Hole Transport layer for Efficient Pb- and Sn-based Perovskite Solar Cellss

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., He, R., Liang, Q. et al. 4-Tert-butylpyridine-assisted low-cost and soluble copper phthalocyanine as dopant-free hole transport layer for efficient Pb- and Sn-based perovskite solar cells. Sci. China Chem. 63, 1053–1058 (2020). https://doi.org/10.1007/s11426-020-9725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9725-3

Keywords

Navigation