Skip to main content
Log in

A review of enantioselective dual transition metal/photoredox catalysis

  • Reviews
  • Special Issue: Celebrating the 100th Anniverary of Chemical Sciences in Nanjing University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transition metal catalysis is one of the most important tools to construct carbon-carbon and carbon-heteroatom bonds in modern organic synthesis. Visible-light photoredox catalysis has recently drawn considerable attention of the scientific community owing to its unique activation modes and significance for the green synthesis. The merger of photoredox catalysis with transition metal catalysts, termed metallaphotoredox catalysis, has become a popular strategy for expanding the synthetic utility of visiblelight photocatalysis. This strategy has led to the discovery of novel asymmetric transformations, which are unfeasible or not easily accessible by a single catalytic system. This contemporary area of organic chemistry holds promise for the development of economical and environmentally friendly methods for the asymmetric synthesis of chiral compounds. In this review, the advances in the enantioselective metallaphotoredox catalysis (EMPC) are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ault A. J Chem Educ, 2002, 1: 572–577

    Google Scholar 

  2. Casey CP. J Chem Educ, 2006, 1: 192–195

    Google Scholar 

  3. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew Chem Int Ed, 2012, 1: 5062–5085

    Google Scholar 

  4. Narayanam JMR, Stephenson CRJ. Chem Soc Rev, 2011, 1: 102–113

    Google Scholar 

  5. Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 1: 6828–6838

    Google Scholar 

  6. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 1: 5322–5363

    Google Scholar 

  7. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 1: 24–57

    Google Scholar 

  8. Schultz DM, Yoon TP. Science, 2014, 343: 343

    Google Scholar 

  9. Romero NA, Nicewicz DA. Chem Rev, 2016, 1: 10075–10166

    Google Scholar 

  10. Ravelli D, Protti S, Fagnoni M. Chem Rev, 2016, 1: 9850–9913

    Google Scholar 

  11. Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew Chem Int Ed, 2015, 1: 3872–3890

    Google Scholar 

  12. Wang C, Lu Z. Org Chem Front, 2015, 1: 179–190

    Google Scholar 

  13. Jiang C, Chen W, Zheng WH, Lu H. Org Biomol Chem, 2019, 1: 8673–8689

    Google Scholar 

  14. Busch J, Knoll DM, Zippel C, Bräse S, Bizzarri C. Dalton Trans, 2019, 1: 15338–15357

    Google Scholar 

  15. Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 1: 10035–10074

    Google Scholar 

  16. Silvi M, Melchiorre P. Nature, 2018, 1: 41–49

    Google Scholar 

  17. Meggers E. Chem Commun, 2015, 1: 3290–3301

    Google Scholar 

  18. Ma J, Zhang X, Huang X, Luo S, Meggers E. Nat Protoc, 2018, 1: 605–632

    Google Scholar 

  19. Litman ZC, Wang Y, Zhao H, Hartwig JF. Nature, 2018, 1: 355–359

    Google Scholar 

  20. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat Rev Chem, 2017, 1: 1

    Google Scholar 

  21. Tellis JC, Primer DN, Molander GA. Science, 2014, 1: 433–436

    Google Scholar 

  22. Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science, 2014, 1: 437–440

    Google Scholar 

  23. Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc Chem Res, 2016, 1: 1429–1439

    Google Scholar 

  24. Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J Am Chem Soc, 2015, 1: 4896–4899

    Google Scholar 

  25. Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DWC. J Am Chem Soc, 2016, 1: 1832–1835

    Google Scholar 

  26. Gandolfo E, Tang X, Raha Roy S, Melchiorre P. Angew Chem Int Ed, 2019, 1: 16854–16858

    Google Scholar 

  27. Heitz DR, Tellis JC, Molander GA. J Am Chem Soc, 2016, 1: 12715–12718

    Google Scholar 

  28. Shields BJ, Doyle AG. J Am Chem Soc, 2016, 1: 12719–12722

    Google Scholar 

  29. Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DWC. Science, 2016, 1: 1304–1308

    Google Scholar 

  30. Shen Y, Gu Y, Martin R. J Am Chem Soc, 2018, 1: 12200–12209

    Google Scholar 

  31. Cheng X, Lu H, Lu Z. Nat Commun, 2019, 10: 10

    Google Scholar 

  32. Fan P, Lan Y, Zhang C, Wang C. J Am Chem Soc, 2020, 1: 2180–2186

    Google Scholar 

  33. Guan H, Zhang Q, Walsh PJ, Mao J. Angew Chem Int Ed, 2020, 1: 5172–5177

    Google Scholar 

  34. Stache EE, Rovis T, Doyle AG. Angew Chem Int Ed, 2017, 1: 3679–3683

    Google Scholar 

  35. Zhou QQ, Lu FD, Liu D, Lu LQ, Xiao WJ. Org Chem Front, 2018, 1: 3098–3102

    Google Scholar 

  36. Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett, 1965, 1: 4387–4388

    Google Scholar 

  37. Trost BM, Dietsch TJ. J Am Chem Soc, 1973, 1: 8200–8201

    Google Scholar 

  38. Trost BM, Strege PE. J Am Chem Soc, 1977, 1: 1649–1651

    Google Scholar 

  39. Trost BM, Thaisrivongs DA, Hartwig J. J Am Chem Soc, 2011, 1: 12439–12441

    Google Scholar 

  40. Ardolino MJ, Morken JP. J Am Chem Soc, 2014, 1: 7092–7100

    Google Scholar 

  41. Misale A, Niyomchon S, Luparia M, Maulide N. Angew Chem Int Ed, 2014, 1: 7068–7073

    Google Scholar 

  42. Mao J, Zhang J, Jiang H, Bellomo A, Zhang M, Gao Z, Dreher SD, Walsh PJ. Angew Chem Int Ed, 2016, 1: 2526–2530

    Google Scholar 

  43. Murakami R, Sano K, Iwai T, Taniguchi T, Monde K, Sawamura M. Angew Chem Int Ed, 2018, 1: 9465–9469

    Google Scholar 

  44. Lang SB, O’Nele KM, Tunge JA. J Am Chem Soc, 2014, 1: 13606–13609

    Google Scholar 

  45. Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem Eur J, 2015, 1: 18589–18593

    Google Scholar 

  46. Zhang HH, Zhao JJ, Yu S. J Am Chem Soc, 2018, 1: 16914–16919

    Google Scholar 

  47. Hossain A, Bhattacharyya A, Reiser O. Science, 2019, 364: eaav9713

    PubMed  Google Scholar 

  48. Wang F, Chen P, Liu G. Acc Chem Res, 2018, 1: 2036–2046

    Google Scholar 

  49. Nicholls TP, Bissember AC. Tetrahedron Lett, 2019, 60: 60

    Google Scholar 

  50. Perepichka I, Kundu S, Hearne Z, Li CJ. Org Biomol Chem, 2015, 1: 447–451

    Google Scholar 

  51. Querard P, Perepichka I, Zysman-Colman E, Li CJ. Beilstein J Org Chem, 2016, 1: 2636–2643

    Google Scholar 

  52. Wang D, Zhu N, Chen P, Lin Z, Liu G. J Am Chem Soc, 2017, 1: 15632–15635

    Google Scholar 

  53. Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal, 2018, 1: 7489–7494

    Google Scholar 

  54. Lu FD, Liu D, Zhu L, Lu LQ, Yang Q, Zhou QQ, Wei Y, Lan Y, Xiao WJ. J Am Chem Soc, 2019, 1: 6167–6172

    Google Scholar 

  55. Bao X, Wang Q, Zhu J. Angew Chem Int Ed, 2019, 1: 2139–2143

    Google Scholar 

  56. Cheng Z, Chen P, Liu G. Acta Chim Sin, 2019, 1: 856–860

    Google Scholar 

  57. Chen J, Wang PZ, Lu B, Liang D, Yu XY, Xiao WJ, Chen JR. Org Lett, 2019, 1: 9763–9768

    Google Scholar 

  58. Wang T, Wang YN, Wang R, Zhang BC, Yang C, Li YL, Wang XS. Nat Commun, 2019, 10: 10

    Google Scholar 

  59. Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science, 2016, 1: 681–684

    Google Scholar 

  60. Guo Q, Wang M, Peng Q, Huo Y, Liu Q, Wang R, Xu Z. ACS Catal, 2019, 1: 4470–4476

    Google Scholar 

  61. Okude Y, Hirano S, Hiyama T, Nozaki H. J Am Chem Soc, 1977, 1: 3179–3181

    Google Scholar 

  62. Namba K, Wang J, Cui S, Kishi Y. Org Lett, 2005, 1: 5421–5424

    Google Scholar 

  63. Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J Am Chem Soc, 2018, 1: 12705–12709

    Google Scholar 

  64. Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem Sci, 2019, 1: 3459–3465

    Google Scholar 

  65. Parasram M, Gevorgyan V. Chem Soc Rev, 2017, 1: 6227–6240

    Google Scholar 

  66. Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Chem, 2019, 1: 510–523

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971110, 21732003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengjian Zhu or Shouyun Yu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HH., Chen, H., Zhu, C. et al. A review of enantioselective dual transition metal/photoredox catalysis. Sci. China Chem. 63, 637–647 (2020). https://doi.org/10.1007/s11426-019-9701-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9701-5

Keywords

Navigation