Skip to main content
Log in

Identification of the active sites and mechanism for partial methane oxidation to methanol over copper-exchanged CHA zeolites

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To make methane a suitable energy carrier and transport less costly, it is an urgent and challenging task for us to convert methane to liquid under mild conditions efficiently. In this study, we explored partial methane oxidation to methanol by density functional theory (DFT) calculations using a hybrid functional (HSE06) with van der Waals (vdW) interactions. The stabilities of different active sites over SSZ-13 and SAPO-34, two CHA type zeolites, are thoroughly investigated by ab initio molecular dynamics (AIMD) simulations and ab initio thermodynamics analyses. Four possible active sites, namely [CuOHCu]2+, [Cu(OH)2Cu]2+, [CuOCu]2+ and [CuOH]+, are identified stable. Methane-to-methanol reaction mechanisms are further studied upon these most stable active sites, among which [CuOCu]2+ and [CuOH]+ are proved to be reactive. The migration of species among zeolite pores are also discussed, which accounts for the activity on [CuOH]+ sites. This concept may represent a more complete picture of catalytic reactions over zeolites in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf

  2. Olivos-Suarez AI, Szécsényi À, Hensen EJM, Ruiz-Martinez J, Pidko EA, Gascon J. ACS Catal, 2016, 6: 2965–2981

    Article  CAS  Google Scholar 

  3. Schwarz H. Angew Chem Int Ed, 2011, 50: 10096–10115

    Article  CAS  Google Scholar 

  4. Labinger JA, Bercaw JE. Nature, 2002, 417: 507–514

    Article  CAS  PubMed  Google Scholar 

  5. Han B, Yang Y, Xu Y, Etim UJ, Qiao K, Xu B, Yan Z. Chin J Catal, 2016, 37: 1206–1215

    Article  CAS  Google Scholar 

  6. Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M. Nature, 2017, 551: 605–608

    Article  CAS  PubMed  Google Scholar 

  7. Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y. ACS Cent Sci, 2016, 2: 424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB, Alayon EMC, Ranocchiari M, van Bokhoven JA. Angew Chem Int Ed, 2016, 55: 5467–5471

    Article  CAS  Google Scholar 

  9. Wulfers MJ, Teketel S, Ipek B, Lobo RF. Chem Commun, 2015, 51: 4447–4450

    Article  CAS  Google Scholar 

  10. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI. Proc Natl Acad Sci USA, 2009, 106: 18908–18913

    Article  CAS  PubMed  Google Scholar 

  11. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA. J Am Chem Soc, 2005, 127: 1394–1395

    Article  CAS  PubMed  Google Scholar 

  12. Kulkarni AR, Zhao ZJ, Siahrostami S, Nørskov JK, Studt F. Catal Sci Technol, 2018, 8: 114–123

    Article  CAS  Google Scholar 

  13. Ipek B, Lobo RF. Chem Commun, 2016, 52: 13401–13404

    Article  CAS  Google Scholar 

  14. Borfecchia E, Lomachenko KA, Giordanino F, Falsig H, Beato P, Soldatov AV, Bordiga S, Lamberti C. Chem Sci, 2014, 6: 548–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vanelderen P, Vancauwenbergh J, Tsai ML, Hadt RG, Solomon EI, Schoonheydt RA, Sels BF. ChemPhysChem, 2014, 15: 91–99

    Article  CAS  PubMed  Google Scholar 

  16. Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI. J Am Chem Soc, 2010, 132: 14736–14738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smeets PJ, Groothaert MH, Schoonheydt RA. Catal Today, 2005, 110: 303–309

    Article  CAS  Google Scholar 

  18. Vanelderen P, Snyder BER, Tsai ML, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI. J Am Chem Soc, 2015, 137: 6383–6392

    Article  CAS  PubMed  Google Scholar 

  19. Vogiatzis KD, Li G, Hensen EJM, Gagliardi L, Pidko EA. J Phys Chem C, 2017, 121: 22295–22302

    Article  CAS  Google Scholar 

  20. Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJM, Pidko EA. J Catal, 2016, 338: 305–312

    Article  CAS  Google Scholar 

  21. Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA. Nat Commun, 2015, 6: 7546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Grundner S, Luo W, Sanchez-Sanchez M, Lercher JA. Chem Commun, 2016, 52: 2553–2556

    Article  CAS  Google Scholar 

  23. Kulkarni AR, Zhao ZJ, Siahrostami S, Nørskov JK, Studt F. ACS Catal, 2016, 6: 6531–6536

    Article  CAS  Google Scholar 

  24. Sushkevich VL, Palagin D, van Bokhoven JA. Angew Chem Int Ed, 2018, 57: 8906–8910

    Article  CAS  Google Scholar 

  25. Meyet J, Searles K, Newton MA, Wörle M, van Bavel AP, Horton AD, van Bokhoven JA, Copéret C. Angew Chem Int Ed, 2019, 58: 9841–9845

    Article  CAS  Google Scholar 

  26. Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF. J Am Chem Soc, 2016, 138: 6028–6048

    Article  CAS  PubMed  Google Scholar 

  27. Pappas DK, Borfecchia E, Dyballa M, Pankin IA, Lomachenko KA, Martini A, Signorile M, Teketel S, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Lillerud KP, Svelle S, Beato P. J Am Chem Soc, 2017, 139: 14961–14975

    Article  CAS  PubMed  Google Scholar 

  28. Oord R, Schmidt JE, Weckhuysen BM. Catal Sci Technol, 2018, 8: 1028–1038

    Article  CAS  Google Scholar 

  29. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE. J Chem Phys, 2006, 125: 224106

    Article  PubMed  CAS  Google Scholar 

  30. Heyd J, Scuseria GE. J Chem Phys, 2004, 121: 1187–1192

    Article  CAS  PubMed  Google Scholar 

  31. Heyd J, Scuseria GE, Ernzerhof M. J Chem Phys, 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  33. Kresse G, Hafner J. Phys Rev B, 1994, 49: 14251–14269

    Article  CAS  Google Scholar 

  34. Klimeš J, Bowler DR, Michaelides A. Phys Rev B, 2011, 83: 195131

    Article  CAS  Google Scholar 

  35. Blöchl PE, Jepsen O, Andersen OK. Phys Rev B, 1994, 49: 16223–16233

    Article  Google Scholar 

  36. Mao Y, Wang Z, Wang HF, Hu P. ACS Catal, 2016, 6: 7882–7891

    Article  CAS  Google Scholar 

  37. Wang Z, Cao XM, Zhu J, Hu P. J Catal, 2014, 311: 469–480

    Article  CAS  Google Scholar 

  38. Paolucci C, Verma AA, Bates SA, Kispersky VF, Miller JT, Gounder R, Delgass WN, Ribeiro FH, Schneider WF. Angew Chem Int Ed, 2014, 53: 11828–11833

    Article  CAS  Google Scholar 

  39. Peng C, Wang H, Hu P. Phys Chem Chem Phys, 2016, 18: 14495–14502

    Article  CAS  PubMed  Google Scholar 

  40. Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J. Phys Rev Lett, 1998, 80: 3650–3653

    Article  CAS  Google Scholar 

  41. Liu ZP, Hu P. J Am Chem Soc, 2003, 125: 1958–1967

    Article  CAS  PubMed  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  43. Reuter K, Scheffler M. Phys Rev B, 2003, 68: 045407

    Article  CAS  Google Scholar 

  44. Reuter K, Scheffler M. Phys Rev B, 2001, 65: 035406

    Article  CAS  Google Scholar 

  45. Reuter K, Frenkel D, Scheffler M. Phys Rev Lett, 2004, 93: 116105

    Article  PubMed  CAS  Google Scholar 

  46. Zhao S, Liu XW, Huo CF, Li YW, Wang J, Jiao H. J Catal, 2012, 294: 47–53

    Article  CAS  Google Scholar 

  47. https://webbook.nist.gov/chemistry/

  48. Paolucci C, Khurana I, Parekh AA, Li S, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R. Science, 2017, 357: 898–903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Queen’s University of Belfast and Chinese Scholarship Council for a Joint Scholarship. The authors gratefully acknowledged the U.K.’s National High-Performance Computing Service ARCHER (for which access was obtained via the UKCP consortium) and High-Performance Computing (HPC) System at the Queen’s University of Belfast for computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Hu, P. Identification of the active sites and mechanism for partial methane oxidation to methanol over copper-exchanged CHA zeolites. Sci. China Chem. 63, 850–859 (2020). https://doi.org/10.1007/s11426-019-9695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9695-9

Keywords

Navigation