Skip to main content
Log in

Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Protein phosphorylation plays essential roles in various biological procedures. Despite the well-established enrichment strategies for O-phosphoproteomics, the intrinsic acid lability of N–P phosphoramidate bond (phosphorylation of histidine, arginine and lysine) has impaired the progress of N-phosphoproteomics. Herein, we reported a retention time difference combining dimethyl labeling (ReDD) strategy for the isolation and identification of phosphorylated lysine (pLys) peptides. By such a method, pLys peptide could be isolated under 100000-fold interference of non-phosphorylated peptides. Furthermore, ReDD strategy was applied to map pLys sites from E. coli samples, leading to the identification of 11 pLys sites, among which K26p that originating from autonomous glycyl radical cofactor was validated both in mass spectrometry and HPLC co-elution experiments. Furthermore, 112 pLys sites from 100 proteins were identified in HeLa cells. All these results demonstrate that ReDD could provide a first glimpse into Lys phosphorylation, and could be an important step toward the global perspective on protein phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Krall AS, Christofk HR. Nature, 2017, 546: 357–358

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Nicolay BN, Chick JM, Gao X, Geng Y, Ren H, Gao H, Yang G, Williams JA, Suski JM, Keibler MA, Sicinska E, Gerdemann U, Haining WN, Roberts TM, Polyak K, Gygi SP, Dyson NJ, Sicinski P. Nature, 2017, 546: 426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oslund RC, Kee JM, Couvillon AD, Bhatia VN, Perlman DH, Muir TW. J Am Chem Soc, 2014, 136: 12899–12911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuhs SR, Meisenhelder J, Aslanian A, Ma L, Zagorska A, Stankova M, Binnie A, Al-Obeidi F, Mauger J, Lemke G, Yates JR Iii, Hunter T. Cell, 2015, 162: 198–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fuhrmann J, Clancy KW, Thompson PR. Chem Rev, 2015, 115: 5413–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hindupur SK, Colombi M, Fuhs SR, Matter MS, Guri Y, Adam K, Cornu M, Piscuoglio S, Ng CKY, Betz C, Liko D, Quagliata L, Moes S, Jenoe P, Terracciano LM, Heim MH, Hunter T, Hall MN. Nature, 2018, 555: 678–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deluca M, Boyer P D, Peter J B, Moyer R W, Ebner K E, Kreil G, Hultquist D E. Biochem Z, 1963, 338: 512-525

    CAS  PubMed  Google Scholar 

  8. Peter J B. J Biol Chem, 1963, 238: 1180–1182

    CAS  PubMed  Google Scholar 

  9. Saito H. Chem Rev, 2001, 101: 2497–2510

    Article  CAS  PubMed  Google Scholar 

  10. Potel CM, Lin MH, Heck AJR, Lemeer S. Nat Meth, 2018, 15: 187–190

    Article  CAS  Google Scholar 

  11. Adam K, Hunter T. Lab Invest, 2018, 98: 233–247

    Article  CAS  PubMed  Google Scholar 

  12. Kee JM, Oslund RC, Perlman DH, Muir TW. Nat Chem Biol, 2013, 9: 416–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kee JM, Villani B, Carpenter LR, Muir TW. J Am Chem Soc, 2010, 132: 14327–14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trentini DB, Suskiewicz MJ, Heuck A, Kurzbauer R, Deszcz L, Mechtler K, Clausen T. Nature, 2016, 539: 48–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suskiewicz MJ, Clausen T. Cell Chem Biol, 2016, 23: 888–890

    Article  CAS  PubMed  Google Scholar 

  16. Fuhrmann J, Subramanian V, Kojetin DJ, Thompson PR. Cell Chem Biol, 2016, 23: 967–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trentini DB, Fuhrmann J, Mechtler K, Clausen T. Mol Cell Proteomics, 2014, 13: 1953–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuhrmann J, Schmidt A, Spiess S, Lehner A, Turgay K, Mechtler K, Charpentier E, Clausen T. Science, 2009, 324: 1323–1327

    Article  CAS  PubMed  Google Scholar 

  19. Junker S, Maaß S, Otto A, Michalik S, Morgenroth F, Gerth U, Hecker M, Becher D. Mol Cell Proteom, 2018, 17: 335–348

    Article  CAS  Google Scholar 

  20. Ouyang H, Fu C, Fu S, Ji Z, Sun Y, Deng P, Zhao Y. Org Biomol Chem, 2016, 14: 1925–1929

    Article  CAS  PubMed  Google Scholar 

  21. Fuhrmann J, Subramanian V, Thompson PR. Angew Chem, 2015, 127: 14928–14931

    Article  Google Scholar 

  22. Schmidt A, Trentini DB, Spiess S, Fuhrmann J, Ammerer G, Mechtler K, Clausen T. Mol Cell Proteom, 2014, 13: 537–550

    Article  CAS  Google Scholar 

  23. Chen CC, Bruegger BB, Kern CW, Lin YC, Halpern RM, Smith RA. Biochemistry, 1977, 16: 4852–4855

    Article  CAS  PubMed  Google Scholar 

  24. Chen CC, Smith DL, Bruegger BB, Halpern RM, Smith RA. Biochemistry, 1974, 13: 3785–3789

    Article  CAS  PubMed  Google Scholar 

  25. Zetterqvist Ö, Engström L. Biochim Biophys Acta, 1967, 141: 523–532

    Article  CAS  PubMed  Google Scholar 

  26. Zetterqvist Ö. Biochim Biophys Acta, 1967, 141: 540–546

    Article  CAS  PubMed  Google Scholar 

  27. Zetterqvist Ö. Biochim Biophys Acta, 1967, 141: 533–539

    Article  CAS  PubMed  Google Scholar 

  28. Smith DL, Chen CC, Bruegger BB, Holtz SL, Halpern RM, Smith RA. Biochemistry, 1974, 13: 3780–3785

    Article  CAS  PubMed  Google Scholar 

  29. Matthews HR. Pharm Ther, 1995, 67: 323–350

    Article  CAS  Google Scholar 

  30. Yokoi F. J Biochem, 2003, 133: 607–614

    Article  CAS  PubMed  Google Scholar 

  31. Hiraishi H, Yokoi F, Kumon A. J Biochem, 1999, 126: 368–374

    Article  CAS  PubMed  Google Scholar 

  32. Attwood PV. Biochim Biophys Acta, 2013, 1834: 470–478

    Article  CAS  PubMed  Google Scholar 

  33. Wong C, Faiola B, Wu W, Kennelly PJ. Biochem J, 1993, 296: 293–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhong H, Xiao X, Zheng S, Zhang W, Ding M, Jiang H, Huang L, Kang J. Nat Commun, 2013, 4: 1656–1662

    Article  CAS  PubMed  Google Scholar 

  35. Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJR, Zou H, Mohammed S. Nat Protoc, 2013, 8: 461–480

    Article  CAS  PubMed  Google Scholar 

  36. Attwood PV, Piggott MJ, Zu XL, Besant PG. Amino Acids, 2007, 32: 145–156

    Article  CAS  PubMed  Google Scholar 

  37. Besant P, Attwood P, Piggott M. Curr Protein Pept Sc, 2009, 10: 536–550

    Article  CAS  Google Scholar 

  38. Bertran-Vicente J, Serwa RA, Schümann M, Schmieder P, Krause E, Hackenberger CPR. J Am Chem Soc, 2014, 136: 13622–13628

    Article  CAS  PubMed  Google Scholar 

  39. Bertran-Vicente J, Schümann M, Schmieder P, Krause E, Hackenberger CPR. Org Biomol Chem, 2015, 13: 6839–6843

    Article  CAS  PubMed  Google Scholar 

  40. Wei YF, Matthews HR. Anal Biochem, 1990, 190: 188–192

    Article  CAS  PubMed  Google Scholar 

  41. Perlova TY, Goloborodko AA, Margolin Y, Pridatchenko ML, Tarasova IA, Gorshkov AV, Moskovets E, Ivanov AR, Gorshkov MV. Proteomics, 2010, 10: 3458–3468

    Article  CAS  PubMed  Google Scholar 

  42. Hoffmann R, Segal M, Otvos Jr. L. Anal Chim Acta, 1997, 352: 327–333

    Article  CAS  Google Scholar 

  43. Batth TS, Francavilla C, Olsen JV. J Proteome Res, 2014, 13: 6176–6186

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Nat Chem Biol, 2011, 7: 58–63

    Article  CAS  PubMed  Google Scholar 

  45. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, Ro J, Wagner GR, Green MF, Madsen AS, Schmiesing J, Peterson BS, Xu G, Ilkayeva OR, Muehlbauer MJ, Braulke T, Mühlhausen C, Backos DS, Olsen CA, McGuire PJ, Pletcher SD, Lombard DB, Hirschey MD, Zhao Y. Cell Metabolism, 2014, 19: 605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y. Cell, 2011, 146: 1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Azevedo C, Saiardi A. Adv Biol Regulation, 2016, 60: 144–150

    Article  CAS  Google Scholar 

  48. Wyborn NR, Messenger SL, Henderson RA, Sawers G, Roberts RE, Attwood MM, Green J. Microbiology, 2002, 6: 1015–1026

    Article  Google Scholar 

  49. Wagner AFV, Schultz S, Bomke J, Pils T, Lehmann WD, Knappe J. Biochem Biophys Res Commun, 2001, 285: 456–462

    Article  CAS  PubMed  Google Scholar 

  50. Azevedo C, Livermore T, Saiardi A. Mol Cell, 2015, 58: 71–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0505003, 2016YFA0501401), the National Natural Science Foundation of China (21505133, 21725506, 91543201), the CAS Key Project in Frontier Science (QYZDY-SSW-SLH017), and Innovation Program from DICP, Chinese Academy of Sciences (DICP TMSR201601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Weng, Y., Jiang, B. et al. Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy. Sci. China Chem. 62, 708–712 (2019). https://doi.org/10.1007/s11426-018-9433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9433-3

Keywords

Navigation