Skip to main content
Log in

Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To design efficient and low-cost core-shell electrocatalysts with an ultrathin platinum shell, the balance between platinum dosage and durability in acid solution is of great importance. In the present work, trimetallic Au@PdPt core-shell nanoparticles (NPs) with Pd/Pt molar ratios ranging from 0.31:1 to 4.20:1 were synthesized based on the Au catalytic reduction strategy and the subsequent metallic replacement reaction. When the Pd/Pt molar ratio is 1.19:1 (designated as Au@Pd1.19Pt1 NPs), the superior electrochemical activity and stability were achieved for oxygen reduction reaction (ORR) in acid solution. Especially, the specific and mass activities of Au@Pd1.19Pt1 NPs are 1.31 and 6.09 times higher than those of commercial Pt/C catalyst. In addition, the Au@Pd1.19Pt1 NPs presented a good durability in acid solution. After 3000 potential cycles between 0.1 and 0.7 V (vs. Ag/AgCl), the oxygen reduction activity is almost unchanged. This study provides a simple strategy to synthesize high-performance trimetallic ORR electrocatalyst for fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594–3657

    Article  CAS  PubMed  Google Scholar 

  2. Chen A, Holt-Hindle P. Chem Rev, 2010, 110: 3767–3804

    Article  CAS  PubMed  Google Scholar 

  3. Kang Y, Snyder J, Chi M, Li D, More KL, Markovic NM, Stamenkovic VR. Nano Lett, 2014, 14: 6361–6367

    Article  CAS  PubMed  Google Scholar 

  4. Wang C, Markovic NM, Stamenkovic VR. ACS Catal, 2012, 2: 891–898

    Article  CAS  Google Scholar 

  5. Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR. J Am Chem Soc, 2011, 133: 14396–14403

    Article  CAS  PubMed  Google Scholar 

  6. Sasaki K, Naohara H, Choi YM, Cai Y, Chen WF, Liu P, Adzic RR. Nat Commun, 2012, 3: 1115

    Article  CAS  PubMed  Google Scholar 

  7. He LL, Zheng JN, Song P, Zhong SX, Wang AJ, Chen Z, Feng JJ. J Power Sources, 2015, 276: 357–364

    Article  CAS  Google Scholar 

  8. Wang G, Huang B, Xiao L, Ren Z, Chen H, Wang D, Abruña HD, Lu J, Zhuang L. J Am Chem Soc, 2014, 136: 9643–9649

    Article  CAS  PubMed  Google Scholar 

  9. Dai Y, Chen S. ACS Appl Mater Interfaces, 2015, 7: 823–829

    Article  CAS  PubMed  Google Scholar 

  10. Hunt ST, Milina M, Alba-Rubio AC, Hendon CH, Dumesic JA, Román-Leshkov Y. Science, 2016, 352: 974–978

    Article  CAS  PubMed  Google Scholar 

  11. Shi G, Yano H, Tryk DA, Iiyama A, Uchida H. ACS Catal, 2017, 7: 267–274

    Article  CAS  Google Scholar 

  12. Lu Y, Jiang Y, Chen W. Nano Energy, 2013, 2: 836–844

    Article  CAS  Google Scholar 

  13. Sun X, Li D, Ding Y, Zhu W, Guo S, Wang ZL, Sun S. J Am Chem Soc, 2014, 136: 5745–5749

    Article  CAS  PubMed  Google Scholar 

  14. Guo S, Zhang S, Su D, Sun S. J Am Chem Soc, 2013, 135: 13879–13884

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Guo S, Zhu H, Su D, Sun S. J Am Chem Soc, 2012, 134: 5060–5063

    Article  CAS  PubMed  Google Scholar 

  16. Barman SC, Hossain MF, Yoon H, Park JY. Biosens Bioelectron, 2018, 100: 16–22

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Yamauchi Y. J Am Chem Soc, 2010, 132: 13636–13638

    Article  CAS  PubMed  Google Scholar 

  18. Venarusso LB, Bettini J, Maia G. J Solid State Electrochem, 2016, 20: 1753–1764

    Article  CAS  Google Scholar 

  19. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR. Nano Lett, 2011, 11: 919–926

    Article  CAS  PubMed  Google Scholar 

  20. Wang Q, Chen S, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W, Li Y, Li L, Wei Z. Adv Mater, 2016, 28: 10673–10678

    Article  CAS  PubMed  Google Scholar 

  21. Zeng J, Yang J, Lee JY, Zhou W. J Phys Chem B, 2006, 110: 24606–24611

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Sasaki K, Sutter E, Adzic RR. Science, 2007, 315: 220–222

    Article  CAS  PubMed  Google Scholar 

  23. Mourdikoudis S, Chirea M, Zanaga D, Altantzis T, Mitrakas M, Bals S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. Nanoscale, 2015, 7: 8739–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li D, Meng F, Wang H, Jiang X, Zhu Y. Electrochim Acta, 2016, 190: 852–861

    Article  CAS  Google Scholar 

  25. Chen A, Ostrom C. Chem Rev, 2015, 115: 11999–12044

    Article  CAS  Google Scholar 

  26. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302–1305

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR. Angew Chem Int Ed, 2010, 49: 8602–8607

    Article  CAS  Google Scholar 

  28. Fang PP, Duan S, Lin XD, Anema JR, Li JF, Buriez O, Ding Y, Fan FR, Wu DY, Ren B, Wang ZL, Amatore C, Tian ZQ. Chem Sci, 2011, 2: 531–539

    Article  CAS  Google Scholar 

  29. Duan S, Ji YF, Fang PP, Chen YX, Xu X, Luo Y, Tian ZQ. Phys Chem Chem Phys, 2013, 15: 4625–4633

    Article  CAS  PubMed  Google Scholar 

  30. Liu CW, Wei YC, Liu CC, Wang KW. J Mater Chem, 2012, 22: 4641–4644

    Article  CAS  Google Scholar 

  31. Huang X, Zhang H, Guo C, Zhou Z, Zheng N. Angew Chem Int Ed, 2009, 48: 4808–4812

    Article  CAS  Google Scholar 

  32. Zhang Y, Li X, Li K, Xue B, Zhang C, Du C, Wu Z, Chen W. ACS Appl Mater Interfaces, 2017, 9: 32688–32697

    Article  CAS  PubMed  Google Scholar 

  33. Turkevich J, Stevenson PC, Hillier J. Discuss Faraday Soc, 1951, 11: 55–75

    Article  Google Scholar 

  34. Frens G. Nat Phys Sci, 1973, 241: 20–22

    Article  CAS  Google Scholar 

  35. Lu Y, Wang Y, Chen W. J Power Sources, 2011, 196: 3033–3038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21773224, 21633008, 21575134, 11374297, 21405149), the National Key Research and Development Plan (2016YFA0203200) and K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Electronic supplementary material

11426_2018_9375_MOESM1_ESM.pdf

Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, C., Du, C. et al. Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution. Sci. China Chem. 62, 378–384 (2019). https://doi.org/10.1007/s11426-018-9375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9375-2

Keywords

Navigation