Skip to main content
Log in

Dual-stimuli-sensitive poly(ortho ester disulfide urethanes)-based nanospheres with rapid intracellular drug release for enhanced chemotherapy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, new poly(ortho ester disulfide urethanes) (POEDU) and poly(ortho ester urethanes) (POEU) were successfully synthesized via polycondensation between active esters of 1,6-hexandiol (HD) and dual-stimuli-sensitive ortho ester disulfide diamine or pH-senstive ortho ester diamine. The corresponding POEDU and POEU nanospheres were easily fabricated using an oil-in-water emulsion technique. In vitro degradation experiments indicated that POEDU nanospheres degraded faster than POEU nanospheres in mildly acidic and reductive environments. Doxorubicin (DOX) as a model antitumor drug was successfully incorporated into these nanospheres to give DOX-loaded nanoparticles (POEDU-DOX and POEU-DOX). In vitro drug release studies showed that release of DOX from dual-stimuli-sensitive POEDU-DOX was accelerated compared with release from the pH-sensitive POEU-DOX under DL-dithiothreitol (DTT) and mildly acidic conditions. In addition, in vitro uptake and cytotoxicity assays revealed that POEDU-DOX exhibited more efficient antitumor effect than POEU-DOX did against both two-dimensional (2D) cells and three-dimensional (3D) multicellular tumor spheroids (MCTS). Finally, in a mice H22 tumor model, POEDU-DOX exhibited preferable antitumor capability. In conclusion, the pH and redox dual-stimuli-sensitive POEDU nanospheres can be superior drug carriers for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minchinton AI, Tannock IF. Nat Rev Cancer, 2006, 6: 583–592

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Xiao C, Li M, Ding J, He C, Zhuang X, Chen X. Polym Chem, 2014, 5: 2801–2808

    Article  CAS  Google Scholar 

  3. Meng F, Cheng R, Deng C, Zhong Z. Mater Today, 2012, 15: 436–442

    Article  CAS  Google Scholar 

  4. Gao GH, Im GH, Kim MS, Lee JW, Yang J, Jeon H, Lee JH, Lee DS. Small, 2010, 6: 1201–1204

    Article  CAS  PubMed  Google Scholar 

  5. Zhuang Y, Wang D, Yin C, Deng H, Sun M, He L, Su Y, Zhu X. Sci China Chem, 2016, 59: 1600–1608

    Article  CAS  Google Scholar 

  6. Zhang J, Chen H, Xu L, Gu Y. J Control Release, 2008, 131: 34–40

    Article  CAS  PubMed  Google Scholar 

  7. Ma N, Li Y, Xu H, Wang Z, Zhang X. J Am Chem Soc, 2010, 132: 442–443

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Pang Y, Huang W, Zhu Z, Zhu X, Zhou Y, Yan D. Biomacromolecules, 2011, 12: 2407–2415

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Liu J, Xu S, Zhou J, Han S, Deng L, Zhang J, Liu J, Meng A, Dong A. ACS Appl Mater Interfaces, 2013, 5: 13216–13226

    Article  CAS  PubMed  Google Scholar 

  10. Azagarsamy MA, Sokkalingam P, Thayumanavan S. J Am Chem Soc, 2009, 131: 14184–14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S, Lee H, Park RW, Kim IS, Kim K, Kwon IC, Jeong SY, Lee DS. J Control Release, 2010, 144: 259–266

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Zhang H, Qin A, Jin Q, Tang BZ, Ji J. Sci China Chem, 2016, 59: 1609–1615

    Article  CAS  Google Scholar 

  13. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Biomaterials, 2009, 30: 5757–5766

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Meng F, Cheng R, Zhong Z. J Control Release, 2010, 142: 40–46

    Article  CAS  PubMed  Google Scholar 

  15. Knorr V, Ogris M, Wagner E. Pharm Res, 2008, 25: 2937–2945

    Article  CAS  PubMed  Google Scholar 

  16. Du JZ, Du XJ, Mao CQ, Wang J. J Am Chem Soc, 2011, 133: 17560–17563

    Article  CAS  Google Scholar 

  17. Dai J, Lin S, Cheng D, Zou S, Shuai X. Angew Chem Int Ed, 2011, 50: 9404–9408

    Article  CAS  Google Scholar 

  18. Bai L, Wang X, Song F, Wang X, Wang Y. Chem Commun, 2015, 51: 93–96

    Article  CAS  Google Scholar 

  19. Qiao ZY, Zhang R, Du FS, Liang DH, Li ZC. J Control Release, 2011, 152: 57–66

    Article  CAS  PubMed  Google Scholar 

  20. Chen W, Zhong P, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. J Control Release, 2013, 169: 171–179

    Article  CAS  PubMed  Google Scholar 

  21. Cai K, Yen J, Yin Q, Liu Y, Song Z, Lezmi S, Zhang Y, Yang X, Helferich WG, Cheng J. Biomater Sci, 2015, 3: 1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Q, He J, Zhang M, Ni P. J Mater Chem B, 2015, 3: 4922–4932

    Article  CAS  Google Scholar 

  23. Zhou X, Luo S, Tang R, Wang R, Wang J. Macromol Biosci, 2015, 15: 385–394

    Article  CAS  PubMed  Google Scholar 

  24. Luo S, Tao Y, Tang R, Wang R, Ji W, Wang C, Zhao Y. J Biomater Sci Polym Ed, 2014, 25: 965–984

    Article  CAS  PubMed  Google Scholar 

  25. Yan G, Wang J, Qin J, Hu L, Zhang P, Wang X, Tang R. Macromol Biosci, 2017, 17: 1600503

    Article  CAS  Google Scholar 

  26. Tang R, Ji W, Wang C. Polymer, 2011, 52: 921–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei B, Tao Y, Wang X, Tang R, Wang J, Wang R, Qiu L. ACS Appl Mater Interfaces, 2015, 7: 10436–10445

    Article  CAS  PubMed  Google Scholar 

  28. Fu S, Yang G, Wang J, Wang X, Cheng X, Tang R. Polymer, 2017, 114: 1–14

    Article  CAS  Google Scholar 

  29. Zha Q, Wang X, Cheng X, Fu S, Yang G, Yao W, Tang R. Mater Sci Eng-C, 2017, 78: 246–257

    Article  CAS  Google Scholar 

  30. Wang X, Zhen X, Wang J, Zhang J, Wu W, Jiang X. Biomaterials, 2013, 34: 4667–4679

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Jiang Z, Zhang S, Saltzman WM. Biomaterials, 2009, 30: 5707–5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vandamme TF, Heller J. J Control Release, 1995, 36: 209–213

    Article  CAS  Google Scholar 

  33. Zhang L, Yu M, Wang J, Tang R, Yan G, Yao W, Wang X. Macromol Biosci, 2016, 16: 1175–1187

    Article  CAS  PubMed  Google Scholar 

  34. Yu M, Zhang L, Wang J, Tang R, Yan G, Cao Z, Wang X. Polymer, 2016, 96: 146–155

    Article  CAS  Google Scholar 

  35. Palamoor M, Jablonski MM. Mol Pharm, 2013, 10: 701–708

    Article  CAS  PubMed  Google Scholar 

  36. Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R. Adv Drug Deliv Rev, 2002, 54: 1015–1039

    Article  CAS  PubMed  Google Scholar 

  37. Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biomaterials, 2009, 30: 6358–6366

    Article  CAS  PubMed  Google Scholar 

  38. Faisant N, Akiki J, Siepmann F, Benoit JP, Siepmann J. Int J Pharm, 2006, 314: 189–197

    Article  CAS  PubMed  Google Scholar 

  39. Zhou T, Zhou X, Xing D. Biomaterials, 2014, 35: 4185–4194

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Kuang H, Xie Z, Chen X, Jing X, Huang Y. Polym Chem, 2014, 5: 4488–4498

    Article  CAS  Google Scholar 

  41. Pu Y, Chang S, Yuan H, Wang G, He B, Gu Z. Biomaterials, 2013, 34: 3658–3666

    Article  CAS  PubMed  Google Scholar 

  42. Chen L, Mccrate JM, C-M Lee J, Li H. Nanotechnology, 2011, 22: 105708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li YL, Zhu L, Liu Z, Cheng R, Meng F, Cui JH, Ji SJ, Zhong Z. Angew Chem Int Ed, 2009, 48: 9914–9918

    Article  CAS  Google Scholar 

  44. Wang X, Yang C, Zhang Y, Zhen X, Wu W, Jiang X. Biomaterials, 2014, 35: 6439–6453

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Tang H, Wang C, Zhang J, Wu W, Jiang X. Theranostics, 2016, 6: 1378–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Erlichman C, Vidgen D. Cancer Res, 1984, 44: 5369–5375

    CAS  PubMed  Google Scholar 

  47. Bryce NS, Zhang JZ, Whan RM, Yamamoto N, Hambley TW. Chem Commun, 2009, 47: 2673–2675

    Article  CAS  Google Scholar 

  48. Wang B, He X, Zhang Z, Zhao Y, Feng W. Acc Chem Res, 2012, 46: 761–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51503001, 51603001), the Research Foundation for Key Program of Education Department of Anhui Province of China (KJ2016A030), the Doctor Research Foundation of Anhui University (J10113190075), and the Academic and Technology Introduction Project of Anhui University (AU02303203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupei Tang.

Electronic supplementary material

11426_2018_9269_MOESM1_ESM.doc

Dual-stimuli-sensitive poly(ortho ester disulfide urethanes)-based nanospheres with rapid intracellular drug release for enhanced chemotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Qin, J., Wang, J. et al. Dual-stimuli-sensitive poly(ortho ester disulfide urethanes)-based nanospheres with rapid intracellular drug release for enhanced chemotherapy. Sci. China Chem. 61, 1447–1459 (2018). https://doi.org/10.1007/s11426-018-9269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9269-6

Keywords

Navigation