Skip to main content
Log in

Artificial molecular machines that can perform work

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An artificial molecular machine consists of molecule or substituent components jointed together in a specific way so that their mutual displacements could be initiated using appropriate outside stimuli. Such an ability of performing mechanical motions by consuming external energy has endowed these tiny machines with vast fascinating potential applications in areas such as actuators, manipulating atoms/molecules, drug delivery, molecular electronic devices, etc. To date, although vast kinds of molecular machine archetypes have been synthesized in facile ways, they are inclined to be defined as switches but not true machines in most cases because no useful work has been done during a working cycle. More efforts need to be devoted on the utilization and amplification of the nanoscale mechanical motions among synthetic molecular machines to accomplish useful tasks. Here we highlight some of the recent advances relating to molecular machines that can perform work on different length scales, ranging from microscopic levels to macroscopic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruns CJ, Stoddart JF. Acc Chem Res, 2014, 47: 2186–2199

    Article  CAS  PubMed  Google Scholar 

  2. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Chem Rev, 2015, 115: 10081–10206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kay ER, Leigh DA. Angew Chem Int Ed, 2015, 54: 10080–10088

    Article  CAS  Google Scholar 

  4. Qu DH, Wang QC, Zhang QW, Ma X, Tian H. Chem Rev, 2015, 115: 7543–7588

    Article  CAS  PubMed  Google Scholar 

  5. Abendroth JM, Bushuyev OS, Weiss PS, Barrett CJ. AC Nano, 2015, 9: 7746–7768

    Article  CAS  Google Scholar 

  6. Cheng C, McGonigal PR, Stoddart JF, Astumian RD. AC. Nano, 2015, 9: 8672–8688

    Article  CAS  Google Scholar 

  7. Xue M, Yang Y, Chi X, Yan X, Huang F. Chem Rev, 2015, 115: 7398–7501

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Qu DH. Sci China Chem, 2015, 58: 916–921

    Article  CAS  Google Scholar 

  9. Colasson B, Credi A, Ragazzon G. Coord Chem Rev, 2016, 325: 125–134

    Article  CAS  Google Scholar 

  10. Cheng C, Stoddart JF. ChemPhysChem, 2016, 17: 1780–1793

    Article  CAS  PubMed  Google Scholar 

  11. Bruns CJ, Stoddart JFTh. Nature of the Mechanical Bond: From Molecules to Machines. New Jersey: John Wiley & Sons, 2016

    Book  Google Scholar 

  12. Kassem S, van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Chem Soc Rev, 2017, 46: 2592–2621

    Article  CAS  PubMed  Google Scholar 

  13. Zhang M, Yan X, Huang F, Niu Z, Gibson HW. Acc Chem Res, 2014, 47: 1995–2005

    Article  CAS  PubMed  Google Scholar 

  14. Zhang ZJ, Han M, Zhang HY, Liu Y. Org Lett, 2013, 15: 1698–1701

    Article  CAS  PubMed  Google Scholar 

  15. Meng Z, Xiang JF, Chen CF. Chem Sci, 2014, 5: 1520–1525

    Article  CAS  Google Scholar 

  16. Wang WK, Xu ZY, Zhang YC, Wang H, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 7490–7493

    Article  CAS  Google Scholar 

  17. Gao C, Luan ZL, Zhang Q, Yang S, Rao SJ, Qu DH, Tian H. Org Lett, 2017, 19: 1618–1621

    Article  CAS  PubMed  Google Scholar 

  18. Kistemaker JCM, Štacko P, Roke D, Wolters AT, Heideman GH, Chang MC, van den Meulen P, Visser J, Otten E, Feringa BL. J Am Chem Soc, 2017, 139: 9650–9661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao ZQ, Wang YC, Zou AH, London G, Zhang Q, Gao C, Qu DH. Chem Commun, 2017, 53: 8683–8686

    Article  CAS  Google Scholar 

  20. Yang S, Luan Z, Gao C, Yu J, Qu D. Sci China Chem, 2018, 61: 306–310

    Article  CAS  Google Scholar 

  21. Feringa BL. Angew Chem Int Ed, 2017, 56: 11060–11078

    Article  CAS  Google Scholar 

  22. Sauvage JP. Angew Chem Int Ed, 2017, 56: 11080–11093

    Article  CAS  Google Scholar 

  23. Stoddart JF. Angew Chem Int Ed, 2017, 56: 11094–11125

    Article  CAS  Google Scholar 

  24. Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Angew Chem Int Ed, 2011, 50: 7524–7528

    Article  CAS  Google Scholar 

  25. Coskun A, Spruell JM, Barin G, Dichtel WR, Flood AH, Botros YY, Stoddart JF. Chem Soc Rev, 2012, 41: 4827–4859

    Article  CAS  PubMed  Google Scholar 

  26. Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Acc Chem Res, 2011, 44: 903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baroncini M, Silvi S, Venturi M, Credi A. Angew Chem Int Ed, 2012, 51: 4223–4226

    Article  CAS  Google Scholar 

  28. Ragazzon G, Baroncini M, Silvi S, Venturi M, Credi A. Nat Nanotech, 2015, 10: 70–75

    Article  CAS  Google Scholar 

  29. Sevick E. Nat Nanotech, 2015, 10: 18–19

    Article  CAS  Google Scholar 

  30. Li H, Cheng C, McGonigal PR, Fahrenbach AC, Frasconi M, Liu WG, Zhu Z, Zhao Y, Ke C, Lei J, Young RM, Dyar SM, Co DT, Yang YW, Botros YY, Goddar Iii WA, Wasielewski MR, Astumian RD, Stoddart JF. J Am Chem Soc, 2013, 135: 18609–18620

    Article  CAS  PubMed  Google Scholar 

  31. Cheng C, McGonigal PR, Schneebeli ST, Li H, Vermeulen NA, Ke C, Stoddart JF. Nat Nanotech, 2015, 10: 547–553

    Article  CAS  Google Scholar 

  32. Pezzato C, Nguyen MT, Cheng C, Kim DJ, Otley MT, Stoddart JF. Tetrahedron, 2017, 73: 4849–4857

    Article  CAS  Google Scholar 

  33. Kassem S, Lee ATL, Leigh DA, Markevicius A, Solà J. Nat Chem, 2016, 8: 138–143

    Article  CAS  PubMed  Google Scholar 

  34. Su X, Aprahamian I. Org Lett, 2011, 13: 30–33

    Article  CAS  PubMed  Google Scholar 

  35. Kassem S, Lee ATL, Leigh DA, Marcos V, Palmer LI, Pisano S. Nature, 2017, 549: 374–378

    Article  CAS  PubMed  Google Scholar 

  36. Kelly TR, Snapper ML. Nature, 2017, 549: 336–337

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Wezenberg SJ, Feringa BL. Chem Commun, 2016, 52: 6765–6768

    Article  CAS  Google Scholar 

  38. Zhao D, van Leeuwen T, Cheng J, Feringa BL. Nat Chem, 2017, 9: 250–256

    Article  CAS  PubMed  Google Scholar 

  39. Lewandowski B, DBo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PME, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA. Science, 2013, 339: 189–193

    Article  CAS  PubMed  Google Scholar 

  40. DBo G, Kuschel S, Leigh DA, Lewandowski B, Papmeyer M, Ward JW. J Am Chem Soc, 2014, 136: 5811–5814

    Article  CAS  Google Scholar 

  41. Bo G, Gall MAY, Kitching MO, Kuschel S, Leigh DA, Tetlow DJ, Ward JW. J Am Chem Soc, 2017, 139: 10875–10879

    Article  CAS  PubMed  Google Scholar 

  42. Wilson MR, Solà J, Carlone A, Goldup SM, Lebrasseur N, Leigh DA. Nature, 2016, 534: 235–240

    Article  CAS  PubMed  Google Scholar 

  43. Astumian RD. Nat Nanotech, 2016, 11: 582–583

    Article  CAS  Google Scholar 

  44. Erbas-Cakmak S, Fielden SDP, Karaca U, Leigh DA, McTernan CT, Tetlow DJ, Wilson MR. Science, 2017, 358: 340–343

    Article  CAS  PubMed  Google Scholar 

  45. Cao ZQ, Miao Q, Zhang Q, Li H, Qu DH, Tian H. Chem Commun, 2015, 51: 4973–4976

    Article  CAS  Google Scholar 

  46. Strutt NL, Fairen-Jimenez D, Iehl J, Lalonde MB, Snurr RQ, Farha OK, Hupp JT, Stoddart JF. Am Chem Soc, 2012, 134: 17436–17439

    Article  CAS  Google Scholar 

  47. Deng H, Olson MA, Stoddart JF, Yaghi OM. Nat Chem, 2010, 2: 439–443

    Article  CAS  PubMed  Google Scholar 

  48. Gong HY, Rambo BM, Cho W, Lynch VM, Oh M, Sessler JL. Chem Commun, 2011, 47: 5973–5975

    Article  CAS  Google Scholar 

  49. Coskun A, Hmadeh M, Barin G, Gándara F, Li Q, Choi E, Strutt NL, Cordes DB, Slawin AMZ, Stoddart JF, Sauvage JP, Yaghi OM. Angew Chem Int Ed, 2012, 51: 2160–2163

    Article  CAS  Google Scholar 

  50. McGonigal PR, Deria P, Hod I, Moghadam PZ, Avestro AJ, Horwitz NE, Gibbs-Hall IC, Blackburn AK, Chen D, Botros YY, Wasielewski MR, Snurr RQ, Hupp JT, Farha OK, Frase. Stoddart J. Proc Natl Acad Sci USA, 2015, 112: 11161–11168

    Article  CAS  Google Scholar 

  51. Sue ACH, Mannige RV, Deng H, Cao D, Wang C, Gándara F, Stoddart JF, Whitelam S, Yaghi OM. Proc Natl Acad Sci USA, 2015, 112: 5591–5596

    Article  CAS  PubMed  Google Scholar 

  52. Vukotic VN, Harris KJ, Zhu K, Schurko RW, Loeb SJ. Nat Chem, 2012, 4: 456–460

    Article  CAS  PubMed  Google Scholar 

  53. Zhu K, O’Keefe CA, Vukotic VN, Schurko RW, Loeb SJ. Nat Chem, 2015, 7: 514–519

    Article  CAS  PubMed  Google Scholar 

  54. Chen Q, Sun J, Li P, Hod I, Moghadam PZ, Kean ZS, Snurr RQ, Hupp JT, Farha OK, Stoddart JF. Am Chem Soc, 2016, 138: 14242–14245

    Article  CAS  Google Scholar 

  55. Li Q, Fuks G, Moulin E, Maaloum M, Rawiso M, Kulic I, Foy JT, Giuseppone N. Nat Nanotech, 2015, 10: 161–165

    Article  CAS  Google Scholar 

  56. Foy JT, Li Q, Goujon A, Colard-Itté JR, Fuks G, Moulin E, Schiffmann O, Dattler D, Funeriu DP, Giuseppone N. Nat Nanotech, 2017, 12: 540–545

    Article  CAS  Google Scholar 

  57. Iwaso K, Takashima Y, Harada A. Nat Chem, 2016, 8: 625–632

    Article  CAS  PubMed  Google Scholar 

  58. Goujon A, Lang T, Mariani G, Moulin E, Fuks G, Raya J, Buhler E, Giuseppone N. Am Chem Soc, 2017, 139: 14825–14828

    Article  CAS  Google Scholar 

  59. Goujon A, Du G, Moulin E, Fuks G, Maaloum M, Buhler E, Giuseppone N. Angew Chem Int Ed, 2016, 55: 703–707

    Article  CAS  Google Scholar 

  60. Fu X, Gu RR, Zhang Q, Rao SJ, Zheng XL, Qu DH, Tian H. Polym Chem, 2016, 7: 2166–2170

    Article  CAS  Google Scholar 

  61. Goujon A, Mariani G, Lang T, Moulin E, Rawiso M, Buhler E, Giuseppone N. Am Chem Soc, 2017, 139: 4923–4928

    Article  CAS  Google Scholar 

  62. Yu JJ, Cao ZQ, Zhang Q, Yang S, Qu DH, Tian H. Chem Commun, 2016, 52: 12056–12059

    Article  CAS  Google Scholar 

  63. Chen J, Leung FKC, Stuart MCA, Kajitani T, Fukushima T, van den Giessen E, Feringa BL. Nat Chem, 2018, 10: 132–138

    Article  CAS  PubMed  Google Scholar 

  64. García-López V, Chen F, Nilewski LG, Duret G, Aliyan A, Kolomeisky AB, Robinson JT, Wang G, Pal R, Tour JM. Nature, 2017, 548: 567–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21572063, 21372076), the Science Fund for Creative Research Groups (21421004), the Programme of Introducing Talents of Discipline to Universities (B16017) and the Fundamental Research Funds for the Central Universities (222201717003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaochun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, D. & Tian, H. Artificial molecular machines that can perform work. Sci. China Chem. 61, 1261–1273 (2018). https://doi.org/10.1007/s11426-018-9267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9267-3

Keywords

Navigation