Skip to main content
Log in

Total chemical and semisynthetic approaches for the preparation of ubiquitinated proteins and their applications

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Protein ubiquitination is an important post-translational modification (PTM) in eukaryotic organisms that regulates a variety of cellular processes, such as protein degradation, signal transduction, apoptosis, and DNA damage tolerance. To decipher mechanistically the diverse biological functions of ubiquitination, homogeneous ubiquitinated proteins are greatly needed. Although direct isolation from cell source and in vitro enzymatic methods can be used to produce such proteins, these methods often suffer from problems of low yield or heterogeneous products. Comparably, total chemical and semisynthetic approaches offer good alternatives to produce the ubiquitinated proteins with high purity and selectivity. This review summarizes the recent developments of protein ubiquitination strategies and the use of the synthesized proteins to help garner structural and functional insight into the inner workings of the ubiquitin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walsh CT, Garneau-Tsodikova S, Gatto GJ. Angew Chem Int Ed, 2005, 44: 7342–7372

    Article  CAS  Google Scholar 

  2. Swatek KN, Komander D. Cell Res, 2016, 26: 399–422

    Article  CAS  Google Scholar 

  3. Li W, Ye Y. Cell Mol Life Sci, 2008, 65: 2397–2406

    Article  CAS  Google Scholar 

  4. Hershko A, Ciechanover A. Annu Rev Biochem, 1998, 67: 425–479

    Article  CAS  Google Scholar 

  5. Chen ZJ, Sun LJ. Mol Cell, 2009, 33: 275–286

    Article  CAS  Google Scholar 

  6. Komander D, Rape M. Annu Rev Biochem, 2012, 81: 203–229

    Article  CAS  Google Scholar 

  7. Komander D, Clague MJ, Urbé S. Nat Rev Mol Cell Biol, 2009, 10: 550–563

    Article  CAS  Google Scholar 

  8. Mevissen TET, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SMV, Ovaa H, Komander D. Cell, 2013, 154: 169–184

    Article  CAS  Google Scholar 

  9. Komander D. Conjugation and Deconjugation of Ubiquitin Family Modifiers. In: New York: Subcellular Biochemistry Springer, 2010. 69–87

    Google Scholar 

  10. Hemantha HP, Brik A. BioOrg Medicinal Chem, 2013, 21: 3411–3420

    Article  CAS  Google Scholar 

  11. Merrifield RB. J Am Chem Soc, 1963, 85: 2149–2154

    Article  CAS  Google Scholar 

  12. Dawson PE, Kent SBH. Annu Rev Biochem, 2000, 69: 923–960

    Article  CAS  Google Scholar 

  13. Schnolzer M, Kent SBH. Science, 1992, 256: 221–225

    Article  CAS  Google Scholar 

  14. Liu CF, Tam JP. Proc Natl Acad Sci USA, 1994, 91: 6584–6588

    Article  CAS  Google Scholar 

  15. Zhang Y, Xu C, Lam HY, Lee CL, Li X. Proc Natl Acad Sci USA, 2013, 110: 6657–6662

    Article  CAS  Google Scholar 

  16. Bode JW, Fox RM, Baucom KD. Angew Chem Int Ed, 2006, 45: 1248–1252

    Article  CAS  Google Scholar 

  17. Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L. Angew Chem Int Ed, 2011, 50: 7645–7649

    Article  CAS  Google Scholar 

  18. Fang GM, Wang JX, Liu L. Angew Chem Int Ed, 2012, 51: 10347–10350

    Article  CAS  Google Scholar 

  19. Huang YC, Fang GM, Liu L. Nat Sci Rev, 2016, 3: 107–116

    Article  CAS  Google Scholar 

  20. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH. Science, 1994, 266: 776–779

    Article  CAS  Google Scholar 

  21. Li H, Dong S. Sci China Chem, 2017, 60: 201–213

    Article  CAS  Google Scholar 

  22. Yan LZ, Dawson PE. J Am Chem Soc, 2001, 123: 526–533

    Article  CAS  Google Scholar 

  23. Wong CTT, Tung CL, Li X. Mol BioSyst, 2013, 9: 826–833

    Article  CAS  Google Scholar 

  24. Pasunooti KK, Yang R, Banerjee B, Yap T, Liu CF. Org Lett, 2016, 18: 2696–2699

    Article  CAS  Google Scholar 

  25. Wan Q, Danishefsky SJ. Angew Chem Int Ed, 2007, 46: 9248–9252

    Article  CAS  Google Scholar 

  26. Muir TW, Sondhi D, Cole PA. Proc Natl Acad Sci USA, 1998, 95: 6705–6710

    Article  CAS  Google Scholar 

  27. He Q, Li J, Qi Y, Wang Z, Huang Y, Liu L. Sci China Chem, 2017, 60: 621–627

    Article  CAS  Google Scholar 

  28. Chatterjee C, McGinty RK, Pellois JP, Muir TW. Angew Chem Int Ed, 2007, 46: 2814–2818

    Article  CAS  Google Scholar 

  29. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW. Nature, 2008, 453: 812–816

    Article  CAS  Google Scholar 

  30. Pan M, Gao S, Zheng Y, Tan X, Lan H, Tan X, Sun D, Lu L, Wang T, Zheng Q, Huang Y, Wang J, Liu L. J Am Chem Soc, 2016, 138: 7429–7435

    Article  CAS  Google Scholar 

  31. Li J, He Q, Liu Y, Liu S, Tang S, Li C, Sun D, Li X, Zhou M, Zhu P, Bi G, Zhou Z, Zheng JS, Tian C. ChemBioChem, 2017, 18: 176–180

    Article  CAS  Google Scholar 

  32. Qi YK, He QQ, Ai HS, Guo J, Li JB. Chem Commun, 2017, 53: 4148–4151

    Article  CAS  Google Scholar 

  33. Xie RL, Xu L, Li JB, Chu GC, Wang T, Huang YC, Li YM. Eur J Org Chem, 2016, 2016: 2665–2670

    Article  CAS  Google Scholar 

  34. Weller CE, Huang W, Chatterjee C. ChemBioChem, 2014, 15: 1263–1267

    Article  CAS  Google Scholar 

  35. Weller CE, Dhall A, Ding F, Linares E, Whedon SD, Senger NA, Tyson EL, Bagert JD, Li X, Augusto O, Chatterjee C. Nat Commun, 2016, 7: 12979

    Article  CAS  Google Scholar 

  36. Yang R, Pasunooti KK, Li F, Liu XW, Liu CF. J Am Chem Soc, 2009, 131: 13592–13593

    Article  CAS  Google Scholar 

  37. Yang R, Pasunooti KK, Li F, Liu XW, Liu CF. Chem Commun, 2010, 46: 7199–7201

    Article  CAS  Google Scholar 

  38. Ajish Kumar KS, Haj-Yahya M, Olschewski D, Lashuel HA, Brik A. Angew Chem Int Ed, 2009, 48: 8090–8094

    Article  CAS  Google Scholar 

  39. Kumar KSA, Spasser L, Erlich LA, Bavikar SN, Brik A. Angew Chem Int Ed, 2010, 49: 9126–9131

    Article  CAS  Google Scholar 

  40. Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A. Angew Chem Int Ed, 2011, 50: 6137–6141

    Article  CAS  Google Scholar 

  41. Merkx R, de Bruin G, Kruithof A, van den Bergh T, Snip E, Lutz M, El Oualid F, Ovaa H. Chem Sci, 2013, 4: 4494–4498

    Article  CAS  Google Scholar 

  42. Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, Riechmann L, Chin JW. J Am Chem Soc, 2011, 133: 10708–10711

    Article  CAS  Google Scholar 

  43. Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. Nat Chem Biol, 2010, 6: 750–757

    Article  CAS  Google Scholar 

  44. Castañeda C, Liu J, Chaturvedi A, Nowicka U, Cropp TA, Fushman D. J Am Chem Soc, 2011, 133: 17855–17868

    Article  Google Scholar 

  45. Yang R, Bi X, Li F, Cao Y, Liu CF. Chem Commun, 2014, 50: 7971–7974

    Article  CAS  Google Scholar 

  46. Bi X, Yang R, Feng X, Rhodes D, Liu CF. Org Biomol Chem, 2016, 14: 835–839

    Article  CAS  Google Scholar 

  47. McGinty RK, Koöhn M, Chatterjee C, Chiang KP, Pratt MR, Muir TW. ACS Chem Biol, 2009, 4: 958–968

    Article  CAS  Google Scholar 

  48. Fierz B, Kilic S, Hieb AR, Luger K, Muir TW. J Am Chem Soc, 2012, 134: 19548–19551

    Article  CAS  Google Scholar 

  49. Chatterjee C, McGinty RK, Fierz B, Muir TW. Nat Chem Biol, 2010, 6: 267–269

    Article  CAS  Google Scholar 

  50. Chen J, Ai Y, Wang J, Haracska L, Zhuang Z. Nat Chem Biol, 2010, 6: 270–272

    Article  CAS  Google Scholar 

  51. Valkevich EM, Guenette RG, Sanchez NA, Chen Y, Ge Y, Strieter ER. J Am Chem Soc, 2012, 134: 6916–6919

    Article  CAS  Google Scholar 

  52. Trang VH, Valkevich EM, Minami S, Chen YC, Ge Y, Strieter ER. Angew Chem Int Ed, 2012, 51: 13085–13088

    Article  CAS  Google Scholar 

  53. Meledin R, Mali SM, Singh SK, Brik A. Org Biomol Chem, 2016, 14: 4817–4823

    Article  CAS  Google Scholar 

  54. Kawakami T, Mishima Y, Hojo H, Suetake I. J Pept Sci, 2017, 23: 532–538

    Article  CAS  Google Scholar 

  55. Weikart ND, Mootz HD. ChemBioChem, 2010, 11: 774–777

    Article  CAS  Google Scholar 

  56. Long L, Furgason M, Yao T. Methods, 2014, 70: 134–138

    Article  CAS  Google Scholar 

  57. Morgan RE, Chudasama V, Moody P, Smith MEB, Caddick S. Org Biomol Chem, 2015, 13: 4165–4168

    Article  CAS  Google Scholar 

  58. Lewis YE, Abeywardana T, Lin YH, Galesic A, Pratt MR. ACS Chem Biol, 2016, 11: 931–942

    Article  CAS  Google Scholar 

  59. Eger S, Scheffner M, Marx A, Rubini M. J Am Chem Soc, 2010, 132: 16337–16339

    Article  CAS  Google Scholar 

  60. Weikart ND, Sommer S, Mootz HD. Chem Commun, 2012, 48: 296–298

    Article  CAS  Google Scholar 

  61. Li X, Fekner T, Ottesen JJ, Chan MK. Angew Chem Int Ed, 2009, 48: 9184–9187

    Article  CAS  Google Scholar 

  62. Bi X, Pasunooti KK, Tareq AH, Takyi-Williams J, Liu CF. Org Biomol Chem, 2016, 14: 5282–5285

    Article  CAS  Google Scholar 

  63. Stanley M, Virdee S. ChemBioChem, 2016, 17: 1472–1480

    Article  CAS  Google Scholar 

  64. Yang K, Li G, Gong P, Gui W, Yuan L, Zhuang Z. ChemBioChem, 2016, 17: 995–998

    Article  CAS  Google Scholar 

  65. D’Arcy P, Wang X, Linder S. Pharmacol Ther, 2015, 147: 32–54

    Article  Google Scholar 

  66. Madrzak J, Fiedler M, Johnson CM, Ewan R, Knebel A, Bienz M, Chin JW. Nat Commun, 2015, 6: 6718

    Article  CAS  Google Scholar 

  67. Ohayon S, Spasser L, Aharoni A, Brik A. J Am Chem Soc, 2012, 134: 3281–3289

    Article  CAS  Google Scholar 

  68. Singh SK, Sahu I, Mali SM, Hemantha HP, Kleifeld O, Glickman MH, Brik A. J Am Chem Soc, 2016, 138: 16004–16015

    Article  CAS  Google Scholar 

  69. Ekkebus R, Flierman D, Geurink PP, Ovaa H. Curr Opin Chem Biol, 2014, 23: 63–70

    Article  CAS  Google Scholar 

  70. Gopinath P, Ohayon S, Nawatha M, Brik A. Chem Soc Rev, 2016, 45: 4171–4198

    Article  CAS  Google Scholar 

  71. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL. EMBO J, 2001, 20: 5187–5196

    Article  CAS  Google Scholar 

  72. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM. Chem Biol, 2002, 9: 1149–1159

    Article  CAS  Google Scholar 

  73. Whedon SD, Markandeya N, Rana ASJB, Weller CE, Senger NA, Turecek F, Strieter ER, Chatterjee C. J Am Chem Soc, 2016, 138: 13774–13777

    Article  CAS  Google Scholar 

  74. Li G, Liang Q, Gong P, Tencer AH, Zhuang Z. Chem Commun, 2014, 50: 216–218

    Article  CAS  Google Scholar 

  75. Haj-Yahya N, Hemantha HP, Meledin R, Bondalapati S, Seenaiah M, Brik A. Org Lett, 2014, 16: 540–543

    Article  CAS  Google Scholar 

  76. Gao S, Pan M, Zheng Y, Huang Y, Zheng Q, Sun D, Lu L, Tan X, Tan X, Lan H, Wang J, Wang T, Wang J, Liu L. J Am Chem Soc, 2016, 138: 14497–14502

    Article  CAS  Google Scholar 

  77. Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. Science, 2016, 351: 725–728

    Article  CAS  Google Scholar 

  78. Singh RK, Sundar A, Fushman D. Angew Chem Int Ed, 2014, 53: 6120–6125

    Article  CAS  Google Scholar 

  79. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. Nat Chem Biol, 2011, 7: 113–119

    Article  CAS  Google Scholar 

  80. Yang K, Gong P, Gokhale P, Zhuang Z. ACS Chem Biol, 2014, 9: 1685–1691

    Article  CAS  Google Scholar 

  81. Meier F, Abeywardana T, Dhall A, Marotta NP, Varkey J, Langen R, Chatterjee C, Pratt MR. J Am Chem Soc, 2012, 134: 5468–5471

    Article  CAS  Google Scholar 

  82. Abeywardana T, Lin YH, Rott R, Engelender S, Pratt MR. Chem Biol, 2013, 20: 1207–1213

    Article  CAS  Google Scholar 

  83. Haj-Yahya M, Fauvet B, Herman-Bachinsky Y, Hejjaoui M, Bavikar SN, Vedhanarayanan Karthikeyan S, Ciechanover A, Lashuel HA, Brik A. Proc Natl Acad Sci USA, 2013, 110: 17726–17731

    Article  CAS  Google Scholar 

  84. Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, Campbell SL. Nat Struct Mol Biol, 2013, 20: 46–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Exploit Technologies Pte Ltd of Agency for Science, Technology and Research (A*Star) of Singapore (ETPL-QP-19-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Fa Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, X., Pasunooti, K.K. & Liu, CF. Total chemical and semisynthetic approaches for the preparation of ubiquitinated proteins and their applications. Sci. China Chem. 61, 251–265 (2018). https://doi.org/10.1007/s11426-017-9122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9122-3

Keywords

Navigation