Skip to main content
Log in

Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: from a monomer to a dimer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two tetraazacyclophane dications (12+ and 22+) with different remote substituents have been synthesized, isolated and characterized. Their electronic structures and physical property were studied by various spectroscopic techniques, single crystal X-ray diffraction, super conducting quantum interference device (SQUID) measurements and theoretical calculations. The dications have triplet ground states with ferromagnetic interaction exceeding the thermal energy at room temperature. The solid-state structures of these species were tunable by substituent effect, with 12+ as a monomer and 22+ as a dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salem L, Rowland C. Angew Chem Int Ed, 1972, 11: 92–111

    Article  CAS  Google Scholar 

  2. Borden WT. Diradicals. New York: Wiley, 1982

    Google Scholar 

  3. Rajca A. Chem Rev, 1994, 94: 871–893

    Article  CAS  Google Scholar 

  4. Schmittel M, Burghart A. Angew Chem Int Ed, 1997, 36: 2550–2589

    Article  Google Scholar 

  5. Power PP. Chem Rev, 2003, 103: 789–810

    Article  CAS  Google Scholar 

  6. Nishinaga T, Komatsu K. Org Biomol Chem, 2005, 3: 561–569

    Article  CAS  Google Scholar 

  7. Hicks RG. Org Biomol Chem, 2007, 5: 1321–1338

    Article  CAS  Google Scholar 

  8. Breher F. Coordin Chem Rev, 2007, 251: 1007–1043

    Article  CAS  Google Scholar 

  9. Hicks RG. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds. Chichester, U.K.: Wiley, 2010

    Book  Google Scholar 

  10. Martin D, Soleilhavoup M, Bertrand G. Chem Sci, 2011, 2: 389–399

    Article  CAS  Google Scholar 

  11. Hankache J, Wenger OS. Chem Rev, 2011, 111: 5138–5178

    Article  CAS  Google Scholar 

  12. Mas-Torrent M, Crivillers N, Rovira C, Veciana J. Chem Rev, 2012, 112: 2506–2527

    Article  CAS  Google Scholar 

  13. Heckmann A, Lambert C. Angew Chem Int Ed, 2012, 51: 326–392

    Article  CAS  Google Scholar 

  14. Abe M, Ye J, Mishima M. Chem Soc Rev, 2012, 41: 3808–3820

    Article  CAS  Google Scholar 

  15. Sun Z, Ye Q, Chi C, Wu J. Chem Soc Rev, 2012, 41: 7857–7889

    Article  CAS  Google Scholar 

  16. Casado J, Ponce Ortiz R, López Navarrete JT. Chem Soc Rev, 2012, 41: 5672–5686

    Article  CAS  Google Scholar 

  17. Chivers T, Konu J. In: Chivers T, Ed. Comprehensive Inorganic Chemistry II: From Elements to Applications. Volume 1: Main-Group Elements, Including Noble Gases. Amsterdam: Elsevier, 2013. 349–373

    Google Scholar 

  18. Abe M. Chem Rev, 2013, 113: 7011–7088

    Article  CAS  Google Scholar 

  19. Rassat A, Sieveking HU. Angew Chem Int Ed, 1972, 11: 303–304

    Article  CAS  Google Scholar 

  20. Veciana J, Rovira C, Crespo MI, Armet O, Domingo VM, Palacio F. J Am Chem Soc, 1991, 113: 2552–2561

    Article  CAS  Google Scholar 

  21. Inoue K, Iwamura H. Angew Chem Int Ed, 1995, 34: 927–928

    Article  CAS  Google Scholar 

  22. Shultz DA, Fico RM, Lee H, Kampf JW, Kirschbaum K, Pinkerton AA, Boyle PD. J Am Chem Soc, 2003, 125: 15426–15432

    Article  CAS  Google Scholar 

  23. Hiraoka S, Okamoto T, Kozaki M, Shiomi D, Sato K, Takui T, Okada K. J Am Chem Soc, 2004, 126: 58–59

    Article  CAS  Google Scholar 

  24. Fukuzaki E, Nishide H. J Am Chem Soc, 2006, 128: 996–1001

    Article  CAS  Google Scholar 

  25. Rajca A, Takahashi M, Pink M, Spagnol G, Rajca S. J Am Chem Soc, 2007, 129: 10159–10170

    Article  CAS  Google Scholar 

  26. Rajca A, Shiraishi K, Rajca S. Chem Commun, 2009, 294: 4372

    Article  Google Scholar 

  27. Boratyński PJ, Pink M, Rajca S, Rajca A. Angew Chim Int Ed, 2010, 49: 5459–5462

    Article  Google Scholar 

  28. Suzuki S, Furui T, Kuratsu M, Kozaki M, Shiomi D, Sato K, Takui T, Okada K. J Am Chem Soc, 2010, 132: 15908–15910

    Article  CAS  Google Scholar 

  29. Gallagher NM, Bauer JJ, Pink M, Rajca S, Rajca A. J Am Chem Soc, 2016, 138: 9377–9380

    Article  CAS  Google Scholar 

  30. Bredas JL, Street GB. Acc Chem Res, 1985, 18: 309–315

    Article  CAS  Google Scholar 

  31. Spangler CW, He M. J Chem Soc Perkin Trans 1, 1995, 715–720

    Google Scholar 

  32. de Melo CP, Silbey R. J Chem Phys, 1988, 88: 2567–2571

    Article  Google Scholar 

  33. Lai CM, Meng HF. Phys Rev B, 1996, 54: 16365–16368

    Article  CAS  Google Scholar 

  34. Bulovic V, Gu G, Burrows PE, Forrest SR, Thompson ME. Nature, 1996, 380: 29–29

    Article  CAS  Google Scholar 

  35. Tamoto N, Adachi C, Nagai K. Chem Mater, 1997, 9: 1077–1085

    Article  CAS  Google Scholar 

  36. Bellmann E, Shaheen SE, Thayumanavan S, Barlow S, Grubbs RH, Marder SR, Kippelen B, Peyghambarian N. Chem Mater, 1998, 10: 1668–1676

    Article  CAS  Google Scholar 

  37. Borsenberger PM, Weiss DS. Organic Photoreceptors for Xerography. New York: Marcel Dekker, 1998

    Google Scholar 

  38. Harris MC, Buchwald SL. J Org Chem, 2000, 65: 5327–5333

    Article  Google Scholar 

  39. Mitschke U, Bäuerle P. J Mater Chem, 2000, 10: 1471–1507

    Article  CAS  Google Scholar 

  40. Nelsen SF, Ismagilov RF, Powell DR. J Am Chem Soc, 1997, 119: 10213–10222

    Article  CAS  Google Scholar 

  41. Nelsen SF, Li G, Schultz KP, Tran HQ, Guzei IA, Evans DH. J Am Chem Soc, 2008, 130: 11620–11622

    Article  CAS  Google Scholar 

  42. Jalilov AS, Li G, Nelsen SF, Guzei IA, Wu Q. J Am Chem Soc, 2010, 132: 6176–6182

    Article  CAS  Google Scholar 

  43. Jalilov AS, Nelsen SF, Guzei IA, Wu Q. Angew Chem Int Ed, 2011, 50: 6860–6863

    Article  CAS  Google Scholar 

  44. Yokoyama Y, Sakamaki D, Ito A, Tanaka K, Shiro M. Angew Chem Int Ed, 2012, 51: 9403–9406

    Article  CAS  Google Scholar 

  45. Zalibera M, Jalilov AS, Stoll S, Guzei IA, Gescheidt G, Nelsen SF. J Phys Chem A, 2013, 117: 1439–1448

    Article  CAS  Google Scholar 

  46. Kamada K, Fuku-en S, Minamide S, Ohta K, Kishi R, Nakano M, Matsuzaki H, Okamoto H, Higashikawa H, Inoue K, Kojima S, Yamamoto Y. J Am Chem Soc, 2013, 135: 232–241

    Article  CAS  Google Scholar 

  47. Zheng X, Wang X, Qiu Y, Li Y, Zhou C, Sui Y, Li Y, Ma J, Wang X. J Am Chem Soc, 2013, 135: 14912–14915

    Article  CAS  Google Scholar 

  48. Su Y, Wang X, Zheng X, Zhang Z, Song Y, Sui Y, Li Y, Wang X. Angew Chem Int Ed, 2014, 53: 2857–2861

    Article  CAS  Google Scholar 

  49. Su Y, Wang X, Li Y, Song Y, Sui Y, Wang X. Angew Chem Int Ed, 2015, 54: 1634–1637

    Article  CAS  Google Scholar 

  50. Li T, Tan G, Shao D, Li J, Zhang Z, Song Y, Sui Y, Chen S, Fang Y, Wang X. J Am Chem Soc, 2016, 138: 10092–10095

    Article  CAS  Google Scholar 

  51. Su Y, Wang X, Wang L, Zhang Z, Wang X, Song Y, Power PP. Chem Sci, 2016, 7: 6514–6518

    Article  CAS  Google Scholar 

  52. Burrezo PM, Lin NT, Nakabayashi K, Ohkoshi SI, Calzado EM, Boj PG, Díaz García MA, Franco C, Rovira C, Veciana J, Moos M, Lambert C, López Navarrete JT, Tsuji H, Nakamura E, Casado J. Angew Chem Int Ed, 2017, 56: 2898–2902

    Article  CAS  Google Scholar 

  53. Ito A, Urabe M, Tanaka K. Angew Chem Int Ed, 2003, 42: 921–924

    Article  CAS  Google Scholar 

  54. Ito A, Urabe M, Tanaka K. Angew Chem Int Ed, 2009, 48: 5785–5785

    Article  CAS  Google Scholar 

  55. Wienk MM, Janssen RAJ. J Am Chem Soc, 1996, 118: 10626–10628

    Article  CAS  Google Scholar 

  56. Fukuzaki E, Nishide H. J Am Chem Soc, 2006, 128: 996–1001

    Article  CAS  Google Scholar 

  57. Hauck SI, Lakshmi KV, Hartwig JF. Org Lett, 1999, 1: 2057–2060

    Article  CAS  Google Scholar 

  58. Ito A, Ono Y, Tanaka K. Angew Chem Int Ed, 2000, 39: 1072−1075

    Article  CAS  Google Scholar 

  59. Kulszewicz-Bajer I, Maurel V, Gambarelli S, Wielgus I, Djurado D. Phys Chem Chem Phys, 2009, 11: 1362–1368

    Article  CAS  Google Scholar 

  60. Tsue H, Ishibashi K, Tamura R. Top Heterocycl Chem, 2008, 17: 73–96

    CAS  Google Scholar 

  61. Wang MX. Chem Commun, 2008, 27: 4541

    Article  Google Scholar 

  62. Wang MX. Acc Chem Res, 2012, 45: 182–195

    Article  CAS  Google Scholar 

  63. Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Pron A. Chem Soc Rev, 2013, 42: 8895–8999

    Article  CAS  Google Scholar 

  64. Ito A. J Mater Chem C, 2016, 4: 4614–4625

    Article  CAS  Google Scholar 

  65. Spin contamination errors were corrected by approximate spin-projection method. S2 before spin projection were 2.0267 and 2.0231 for the triplet states; 1.0045 and 1.0016 for the open-shell singlet states of 1 2+ and 2 2+, respectively. Kitagawa Y, Saito T, Ito M, Shoji M, Koizumi K, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K. Chem Phys Lett, 2007, 442: 445–450

    Article  CAS  Google Scholar 

  66. Krossing I. Chem Eur J, 2001, 7: 490–502

    Article  CAS  Google Scholar 

  67. X-ray data for 1 2+ and 2 2+ are listed in Table S1 in the Supporting Information online. CCDC-1534033 and 1543240 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

  68. All calculations were performed using the Gaussian 09 program suite. Frisch MJ, et al. Gaussian 09. Revision B.01. Wallingford, CT: Gaussian, Inc., 2010. See Supporting Information for coordinates and full citation

  69. Bondi A. J Phys Chem, 1964, 68: 441–451

    Article  CAS  Google Scholar 

  70. Haldane FDM. Phys Lett A, 1983, 93: 464–468

    Article  Google Scholar 

  71. Haldane FDM. Phys Rev Lett, 1983, 50: 1153–1156

    Article  Google Scholar 

  72. Zheludev A, Honda Z, Chen Y, Broholm CL, Katsumata K, Shapiro SM. Phys Rev Lett, 2002, 88: 077206

    Article  CAS  Google Scholar 

  73. Stone MB, Zaliznyak IA, Hong T, Broholm CL, Reich DH. Nature, 2006, 440: 187–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21525102, 21690062), and the Natural Science Foundation of Jiangsu Province (BK20140014). We are grateful to the High Performance Computing Center of Nanjing University for doing the numerical calculations in this paper on its IBM Blade cluster system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Wang.

Electronic supplementary material

11426_2017_9101_MOESM1_ESM.doc

Air-Stable Diradical Dications with Ferromagnetic Interaction Exceeding the Thermal Energy at Room Temperature: From a Monomer to a Dimer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, L., Chen, S. et al. Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: from a monomer to a dimer. Sci. China Chem. 61, 300–305 (2018). https://doi.org/10.1007/s11426-017-9101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9101-5

Keywords

Navigation