Skip to main content
Log in

Fullerenes and derivatives as electron transport materials in perovskite solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this study, two fullerenes (C60, C70) and their methano-substitutions (PC61BM, PC71BM), as electron transport materials (ETMs) in perovskite solar cells (Pero-SCs), were systematically studied. As being used as ETMs, methanofullerenes, though with lower electron mobility compared to the counterpart pristine fullerenes, lead to higher power conversion efficiencies (PCEs) of Pero-SCs. The difference is likely caused by the fill-out vacancies and smoother morphology of the interfaces between ETM and perovskite layers, as they were prepared by different methods. In addition, compared to C60 and PC61BM, C70 and PC71BM showed priority in terms of short-circuit current density, which should be attributed to fast free charge extraction abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  Google Scholar 

  2. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316–319

    Article  CAS  Google Scholar 

  3. Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395–398

    Article  CAS  Google Scholar 

  4. Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546

    Article  CAS  Google Scholar 

  5. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234–1237

    Article  CAS  Google Scholar 

  6. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341–344

    Article  CAS  Google Scholar 

  7. Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. Solid State Commun, 2003, 127: 619–623

    Article  CAS  Google Scholar 

  8. Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum TC, Lam YM. Energy Environ Sci, 2014, 7: 399–407

    Article  CAS  Google Scholar 

  9. Stoumpos CC, Malliakas CD, Kanatzidis MG. Inorg Chem, 2013, 52: 9019–9038

    Article  CAS  Google Scholar 

  10. Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238

    Article  CAS  Google Scholar 

  11. You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2015, 11: 75–81

    Article  Google Scholar 

  12. Liu X, Yu H, Yan L, Dong Q, Wan Q, Zhou Y, Song B, Li Y. ACS Appl Mater Interf, 2015, 7: 6230–6237

    Article  CAS  Google Scholar 

  13. Liu X, Lei M, Zhou Y, Song B, Li Y. Appl Phys Lett, 2015, 107: 063901

    Article  Google Scholar 

  14. Chang AHH, Ermler WC, Pitzer RM. J Phys Chem, 1991, 95: 9288–9291

    Article  CAS  Google Scholar 

  15. Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727–3732

    Article  CAS  Google Scholar 

  16. Chiang CH, Tseng ZL, Wu CG. J Mater Chem A, 2014, 2: 15897–15903

    Article  CAS  Google Scholar 

  17. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784

    Article  CAS  Google Scholar 

  18. Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Energy Environ Sci, 2014, 7: 2359–2365

    Article  CAS  Google Scholar 

  19. Lo MF, Guan ZQ, Ng TW, Chan CY, Lee CS. Adv Funct Mater 2015, 25: 1213-1218

    Article  CAS  Google Scholar 

  20. Wang C, Wang C, Liu X, Kauppi J, Shao Y, Xiao Z, Bi C, Huang J, Gao Y. Appl Phys Lett, 2015, 106: 111603

    Article  Google Scholar 

  21. Liang PW, Chueh CC, Williams ST, Jen AKY. Adv Energy Mater, 2015, 5: 1402321–1402327

    Article  Google Scholar 

  22. Dong Y, Li W, Zhang X, Xu Q, Liu Q, Li C, Bo Z. Small, 2016, 12: 1098–1104

    Article  CAS  Google Scholar 

  23. Chang CY, Huang WK, Chang YC, Lee KT, Chen CT. J Mater Chem A, 2016, 4: 640–648

    Article  CAS  Google Scholar 

  24. Eperon GE, Burlakov VM, Docampo P, Goriely A, Snaith HJ. Adv Funct Mater, 2014, 24: 151–157

    Article  CAS  Google Scholar 

  25. Lin N, Qiao J, Dong H, Ma F, Wang L. J Mater Chem A, 2015, 3: 22839–22845

    Article  CAS  Google Scholar 

  26. Yu H, Liu X, Xia Y, Dong Q, Zhang K, Wang Z, Zhou Y, Song B, Li Y. J Mater Chem A, 2016, 4: 321–326

    Article  CAS  Google Scholar 

  27. Dong Q, Wang Z, Zhang K, Yu H, Huang P, Liu X, Zhou Y, Chen N, Song B. Nanoscale, 2016, 8: 5552–5558

    Article  CAS  Google Scholar 

  28. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JTW, Wojciechowski K, Zhang W. J Phys Chem Lett, 2014, 5: 1511–1515

    Article  CAS  Google Scholar 

  29. van Reenen S, Kemerink M, Snaith HJ. J Phys Chem Lett, 2015, 6: 3808–3814

    Article  Google Scholar 

  30. Yan L, Song Y, Zhou Y, Song B, Li Y. Organic Electrons, 2015, 17: 94–101

    Article  CAS  Google Scholar 

  31. Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad WS, Barea EM, Fabregat-Santiago F, Mora-Sero I, Bisquert J. Nano Lett, 2014, 14: 888–893

    Article  CAS  Google Scholar 

  32. Wang W, Yuan J, Shi G, Zhu X, Shi S, Liu Z, Han L, Wang HQ, Ma W. ACS Appl Mater Interf, 2015, 7: 3994–3999

    Article  CAS  Google Scholar 

  33. Bag M, Renna LA, Adhikari RY, Karak S, Liu F, Lahti PM, Russell TP, Tuominen MT, Venkataraman D. J Am Chem Soc, 2015, 137: 13130–13137

    Article  CAS  Google Scholar 

  34. Li JF, Zhang ZL, Gao HP, Zhang Y, Mao YL. J Mater Chem A, 2015, 3: 19476–19482

    Article  CAS  Google Scholar 

  35. Lu H, Ma Y, Gu B, Tian W, Li L. J Mater Chem A, 2015, 3: 16445–16452

    Article  CAS  Google Scholar 

  36. Chen CY, Chang JH, Chiang KM, Lin HL, Hsiao SY, Lin HW. Adv Funct Mater, 2015, 25: 7064–7070

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (51303118, 91333204), the Natural Science Foundation of Jiangsu Province (BK20130289), the Ph.D. Programs Foundation of Ministry of Education of China (20133201120008), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Scientific Research Foundation for Returned Scholars, Ministry of Education of China, and Beijing National Laboratory for Molecular Sciences, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhou or Bo Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Yu, H., Liu, X. et al. Fullerenes and derivatives as electron transport materials in perovskite solar cells. Sci. China Chem. 60, 144–150 (2017). https://doi.org/10.1007/s11426-016-0115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0115-x

Keywords

Navigation