Skip to main content
Log in

Tuning the aggregation structure and electrical property of 2.6-diphenyl-anthracene by the density of octadecyltrichlorosilane

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The physical and chemical properties of organic semiconductors are closely related to their aggregation structure. Tuning of aggregation structure and electrical property is important for the application in organic electronics. In this study, a facile way to tune the aggregation structure and electrical property of 2.6-diphenyl-anthracene (DPA) is realized by using the octadecyltrichlorosilane (OTS) modification layer with different density which is fabricated by controlling reaction temperature and time. Compared with low density OTS, DPA forms larger grain size, less grain boundaries, and better molecular ordering on high density OTS surface. As a result, the charge transporting mobility of DPA film on high density OTS surface is about two orders of magnitude higher than that on low density OTS surface. The tunable aggregation structure and electrical property of DPA demonstrated here would be meaningful for the application of DPA in organic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forrest SR. Nature, 2004, 428: 911–918

    Article  CAS  Google Scholar 

  2. Stingelin-Stutzmann N. Nat Mater, 2008, 7: 171–172

    Article  CAS  Google Scholar 

  3. Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, de Leeuw DM. Nat Mater, 2004, 3: 106–110

    Article  CAS  Google Scholar 

  4. Melzer C, von Seggern H. Nat Mater, 2010, 9: 470–472

    Article  CAS  Google Scholar 

  5. Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae WG, Wang H, Mei P, Chou HH, Cui B, Deisseroth K, Ng TN, Bao Z. Science, 2015, 350: 313–316

    Article  CAS  Google Scholar 

  6. Li L, Hu W, Fuchs H, Chi L. Adv Energy Mater, 2011, 1: 188–193

    Article  CAS  Google Scholar 

  7. Minemawari H, Yamada T, Matsui H, Tsutsumi JY, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364–367

    Article  CAS  Google Scholar 

  8. Kwon S, Kim J, Kim G, Yu K, Jo YR, Kim BJ, Kim J, Kang H, Park B, Lee K. Adv Mater, 2015, 27: 6870–6877

    Article  CAS  Google Scholar 

  9. Lee BH, Bazan GC, Heeger AJ. Adv Mater, 2016, 28: 57–62

    Article  CAS  Google Scholar 

  10. Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z. Nat Mater, 2013, 12: 665–671

    Article  CAS  Google Scholar 

  11. Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L, Wang Y, Yu J, Sun Y, Hu W, Heeger AJ. Nat Commun, 2015, 6: 10032

    Article  CAS  Google Scholar 

  12. Yamamoto T, Takimiya K. J Am Chem Soc, 2007, 129: 2224–2225

    Article  CAS  Google Scholar 

  13. Hiszpanski AM, Lee SS, Wang H, Woll AR, Nuckolls C, Loo YL. ACS Nano, 2013, 7: 294–300

    Article  CAS  Google Scholar 

  14. Cheng HL, Chou WY, Kuo CW, Wang YW, Mai YS, Tang FC, Chu SW. Adv Funct Mater, 2008, 18: 285–293

    Article  CAS  Google Scholar 

  15. Lee SS, Tang SB, Smilgies DM, Woll AR, Loth MA, Mativetsky JM, Anthony JE, Loo YL. Adv Mater, 2012, 24: 2692–2698

    Article  CAS  Google Scholar 

  16. Jang Y, Cho JH, Kim DH, Park YD, Hwang M, Cho K. Appl Phys Lett, 2007, 90: 132104

    Article  Google Scholar 

  17. Li L, Tang Q, Li H, Hu W. J Phys Chem B, 2008, 112: 10405–10410

    Article  CAS  Google Scholar 

  18. Kline RJ, Mc Gehee MD, Toney MF. Nat Mater, 2006, 5: 222–228

    Article  Google Scholar 

  19. Di CA, Liu Y, Yu G, Zhu D. Acc Chem Res, 2009, 42: 1573–1583

    Article  CAS  Google Scholar 

  20. Yoon MH, Kim C, Facchetti A, Marks TJ. J Am Chem Soc, 2006, 128: 12851–12869

    Article  CAS  Google Scholar 

  21. Viani L, Risko C, Toney MF, Breiby DW, Bredas JL. ACS Nano, 2014, 8: 690–700

    Article  CAS  Google Scholar 

  22. Zhang H, Guo X, Hui J, Hu S, Xu W, Zhu D. Nano Lett, 2011, 11: 4939–4946

    Article  CAS  Google Scholar 

  23. Li L, Tang Q, Li H, Yang X, Hu W, Song Y, Shuai Z, Xu W, Liu Y, Zhu D. Adv Mater, 2007, 19: 2613–2617

    Article  CAS  Google Scholar 

  24. Virkar AA, Mannsfeld SCB, Bao Z. J Mater Chem, 2010, 20: 2664–2671

    Article  CAS  Google Scholar 

  25. Lee HS, Kim DH, Cho JH, Hwang M, Jang Y, Cho K. J Am Chem Soc, 2008, 130: 10556–10564

    Article  CAS  Google Scholar 

  26. Virkar A, Mannsfeld S, Oh JH, Toney MF, Tan YH, Liu GY, Scott JC, Miller R, Bao Z. Adv Funct Mater, 2009, 19: 1962–1970

    Article  CAS  Google Scholar 

  27. Kang B, Park N, Lee J, Min H, Choi HH, Lee HS, Cho K. Chem Mater, 2015, 27: 4669–4676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqiang Li or Wenping Hu.

Electronic supplementary material

11426_2016_98_MOESM1_ESM.doc

Tuning the Aggregation Structure and Electrical Property of 2.6-diphenyl-anthracene by the Density of Octadecyltrichlorosilane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, X., Liu, J. et al. Tuning the aggregation structure and electrical property of 2.6-diphenyl-anthracene by the density of octadecyltrichlorosilane. Sci. China Chem. 59, 1645–1650 (2016). https://doi.org/10.1007/s11426-016-0098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0098-y

Keywords

Navigation