Skip to main content
Log in

Near-infrared spectroscopy and chemometric modelling for rapid diagnosis of kidney disease

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rapid diagnosis is important for efficient treatment in clinical medicine. This study aimed at development of a method for rapid and reliable diagnosis using near-infrared (NIR) spectra of human serum samples with the help of chemometric modelling. The NIR spectra of sera from 48 healthy individuals and 16 patients with suspected kidney disease were analyzed. Discrete wavelet transform (DWT) and variable selection were adopted to extract the useful information from the spectra. Principal component analysis (PCA), linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLSDA) were used for discrimination of the samples. Classification of the two-class sera was obtained using LDA and PLSDA with the help of DWT and variable selection. DWT-LDA produced 93.8% and 83.3% of the recognition rates for the validation samples of the two classes, and 100% recognition rates were obtained using DWT-PLSDA. The results demonstrated that the tiny differences between the spectra of the sera were effectively explored using DWT and variable selection, and the differences can be used for discrimination of the sera from healthy and possible patients. NIR spectroscopy and chemometrics may be a potential technique for fast diagnosis of kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G. Kidney Int, 2005, 67: 2089–2100

    Article  Google Scholar 

  2. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, van Lente F, Levey AS. J Am Med Assoc, 2007, 298: 2038–2047

    Article  CAS  Google Scholar 

  3. Levey AS, Coresh J. Lancet, 2012, 379: 165–180

    Article  Google Scholar 

  4. Radzikowska E, Jagus P, Skoczylas A, Sobiecka M, Chorostowska-Wynimko J, Wiatr E, Kus J, Roszkowski-Sliz K. Pol Arch Med Wewn, 2013, 123: 533–537

    CAS  Google Scholar 

  5. Yang ZX, Liang Y, Li C, Xi WQ, Zhong RQ. Rheumatol Int, 2012, 32: 2715–2723

    Article  CAS  Google Scholar 

  6. Blass KG, Thibert RJ, Lam LK. Zeitschrift Fur Klinische Chemie Und Klinische Biochemie, 1974, 12: 336–343

    CAS  Google Scholar 

  7. Dai XH, Fang X, Zhang CM, Xu RF, Xu B. J Chromatogr B, 2007, 857: 287–295

    Article  CAS  Google Scholar 

  8. Lorentz K, Berndt W. Anal Biochem, 1967, 18: 58–63

    Article  CAS  Google Scholar 

  9. Kulik W, Oosterveld MJS, Kok RM, Meer K. J Chromatogr B, 2003, 791: 399–405

    Article  CAS  Google Scholar 

  10. Harlan R, Clarke W, Bussolo JMD, Kozak M, Straseski J, Meany DL. Clin Chim Acta, 2010, 411: 1728–1734

    Article  CAS  Google Scholar 

  11. Mundaca-Uribe R, Bustos-Ramírez F, Zaror-Zaror C, Aranda-Bustos M, Neira-Hinojosa J, Pena-Farfal C. Sensor Actuat B Chem, 2014, 195: 58–62

    Article  CAS  Google Scholar 

  12. Kalhor H, Alizadeh N. Anal Bioanal Chem, 2013, 405: 5333–5339

    Article  CAS  Google Scholar 

  13. Fernandez-Fernandez M, Rodríguez-Gonzalez P, Alvarez MEA, Rodríguez F, Menendez FVA, Alonso JIG. Anal Chem, 2015, 87: 3755–3763

    Article  CAS  Google Scholar 

  14. Fernández-Fernández M, González-Antuña A, Rodríguez-González P, Álvarez MEA, Álvarez FV, Alonso JIG. Clin Chim Acta, 2014, 431: 96–102

    Article  Google Scholar 

  15. Lee S, Choi H, Cha K, Kim MK, Kim JS, Youn CH, Lee SH, Chung H. Bull Korean Chem Soc, 2012, 33: 4267–4270

    Article  CAS  Google Scholar 

  16. Gowen AA, Marini F, Tsuchisaka Y, Luca SD, Bevilacqua M, O’Donnell C, Downey G, Tsenkova R. Talanta, 2015, 131: 609–618

    Article  CAS  Google Scholar 

  17. Tan C, Li ML, Qin X. Anal Bioanal Chem, 2007, 389: 667–674

    Article  CAS  Google Scholar 

  18. Sakudo A, Kuratsune H, Kato YH, Ikuta K. Clin Chim Acta, 2012, 413: 1629–1632

    Article  CAS  Google Scholar 

  19. Sakudo A, Suganuma Y, Sakima R, Ikuta K. Clin Chim Acta, 2012, 413: 467–472

    Article  CAS  Google Scholar 

  20. Yang F, Tian J, Xiang YH, Zhang ZY, Harrington de PB. Cancer Epidemiol, 2012, 36: 317–323

    Article  CAS  Google Scholar 

  21. Ding XX, Ni YN, Kokot S. Chemom Intell Lab Syst, 2015, 144: 17–23

    Article  CAS  Google Scholar 

  22. Shan RF, Mao ZY, Yin LH, Cai WS, Shao XG. Anal Methods, 2014, 6: 4692–4697

    Article  CAS  Google Scholar 

  23. Xu ZH, Liu Y, Li XY, Cai WS, Shao XG. Spectrochim Acta Pt A, 2015, 149: 985–990

    Article  CAS  Google Scholar 

  24. Sakudo A, Baba K, Ikuta K. Clin Chim Acta, 2012, 414: 130–134

    Article  CAS  Google Scholar 

  25. Chen H, Lin Z, Mo L, Wu HG, Wu T, Tan C. Spectrochim Acta Pt A, 2015, 151: 286–291

    Article  CAS  Google Scholar 

  26. Kennard RW, Stone LA. Technometrics, 1969, 11: 137–148

    Article  Google Scholar 

  27. Barnes RJ, Dhanoa MS, Lister SJ. Appl Spectrosc, 1989, 43: 772–777

    Article  CAS  Google Scholar 

  28. Staggs JEJ. Fire Safety J, 2005, 40: 493–505

    Article  Google Scholar 

  29. Joliffe IT. Stat Methods Med Res, 1992, 1: 69–95

    Article  CAS  Google Scholar 

  30. Xia ZZ, Cai WS, Shao XG. J Sep Sci, 2015, 38: 621–625

    Article  CAS  Google Scholar 

  31. Tominaga Y. Chemom Intell Lab Syst, 1999, 49: 105–115

    Article  CAS  Google Scholar 

  32. Alsberg BK, Goodacre R, Rowland JJ, Kell DB. Anal Chim Acta, 1997, 348: 389–407

    Article  CAS  Google Scholar 

  33. Cozzolino D, Smyth HE, Gishen M. J Agric Food Chem, 2003, 51: 7703–7708

    Article  CAS  Google Scholar 

  34. Shao XG, Leung AKM, Chau FT. Acc Chem Res, 2003, 36: 276–283

    Article  CAS  Google Scholar 

  35. Shao XG, Ma CX. Chemom Intell Lab Syst, 2003, 69: 157–165

    Article  CAS  Google Scholar 

  36. Shao XG, Cai WS, Sun PY, Zhang MS, Zhao GW. Anal Chem, 1997, 69: 1722–1725

    Article  CAS  Google Scholar 

  37. Ni YN, Song RM, Kokot S. Spectrochim Acta Pt A, 2012, 96: 252–258

    Article  CAS  Google Scholar 

  38. Han QJ, Wu HL, Cai CB, Xu L, Yu RQ. Anal Chim Acta, 2008, 612: 121–125

    Article  CAS  Google Scholar 

  39. Cai WS, Li YK, Shao XG. Chemom Intell Lab Syst, 2008, 90: 188–194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (21475068) and MOE Innovation Team (IRT13022) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguang Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Liu, X., Yu, X. et al. Near-infrared spectroscopy and chemometric modelling for rapid diagnosis of kidney disease. Sci. China Chem. 60, 299–304 (2017). https://doi.org/10.1007/s11426-016-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0092-6

Keywords

Navigation