Skip to main content
Log in

Enzyme-free and multiplexed microRNA detection using microRNA-initiated DNA molecular motor

  • Articles
  • SPECIAL TOPIC · Fluorescent Chemical/Biological Sensors and Imaging
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, we have developed a sensitive, simple, and enzyme-free assay for detection of microRNAs (miRNAs) by means of a DNA molecular motor consisting of two stem-loop DNAs with identical stems and complementary loop domains. In the presence of miRNA target, it can hybridize with one of the stem-loop DNA to open the stem and to produce a miRNA/DNA hybrid and a single strand (ss) DNA, the ssDNA will in turn hybridize with another stem-loop DNA and finally form a double strand (ds) DNA to release the miRNA. One of the stem-loop DNA is double-labeled by a fluorophore/quencher pair with efficiently quenched fluorescence. The formation of dsDNA can produced specific fluorescence signal for miRNA detection. The released miRNA will continuously initiate the next hybridization of the two stem-loop DNAs to form a cycle-running DNA molecular motor, which results in great fluorescence amplification. With the efficient signal amplification, as low as 1 pmol/L miRNA target can be detected and a wide dynamic range from 1 pmol/L to 2 nmol/L is also obtained. Moreover, by designing different stem-loop DNAs specific to different miRNA targets and labeling them with different fluorophores, multiplexed miRNAs can be simultaneously detected in one-tube reaction with the synchronous fluorescence spectrum (SFS) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartel DP. Cell, 2004, 116: 281–297

    Article  CAS  Google Scholar 

  2. Dong HF, Lei JP, Ding L, Wen YQ, Ju HX, Zhang XJ. Chem Rev, 2013, 113: 6207–6233

    Article  CAS  Google Scholar 

  3. Cheng AM, Byrom MW, Shelton J, Ford LP. Nucleic Acids Res, 2005, 33: 1290–1297

    Article  CAS  Google Scholar 

  4. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP. Science, 2005, 311: 1817–1821

    Article  CAS  Google Scholar 

  5. Calin GA, Croce CM. Nat Rev Cancer, 2006, 6: 857–866

    Article  CAS  Google Scholar 

  6. Lujambio A, Lowe SW. Nature, 2012, 482: 347–355

    Article  CAS  Google Scholar 

  7. Peter ME. Oncogene, 2010, 29: 2161–2164

    Article  CAS  Google Scholar 

  8. Wegman DW, Cherney LT, Yousef GM, Krylov SN. Anal Chem, 2013, 85: 6518–6523

    Article  CAS  Google Scholar 

  9. Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Nucleic Acids Res, 2005, 33: e179

    Article  CAS  Google Scholar 

  10. Tang FC, Hajkova P, Barton SC, Carroll DO, Lee C, Lao KQ, Surani MA. Nat Protoc, 2006, 1: 1154–1159

    Article  CAS  Google Scholar 

  11. Allawi HT, Dahlberg JE, Olson S, Lund E, Olson M, Ma WP, Takova T, Neri BP, Lyamichev VI. RNA, 2004, 10: 1153–1161

    Article  CAS  Google Scholar 

  12. Jia HX, Li ZP, Liu CH, Cheng YQ. Angew Chem Int Ed, 2010, 49: 5498–5501

    Article  CAS  Google Scholar 

  13. Cheng YQ, Zhang X, Li ZP, Jiao XX, Wang YC, Zhang YL. Angew Chem Int Ed, 2009, 48: 3268–3272

    Article  CAS  Google Scholar 

  14. Li CP, Li ZP, Jia HX, Yan JL. Chem Commum, 2011, 47: 2595–2597

    Article  CAS  Google Scholar 

  15. Yang L, Liu CH, Ren W, Li ZP. ACS Appl Mater Inter, 2012, 4: 6450–6453

    Article  CAS  Google Scholar 

  16. Jiang ZZ, Wang H, Zhang XB, Liu CH, Li ZP. Anal Methods, 2014, 6: 9477–9482

    Article  CAS  Google Scholar 

  17. Wark AW, Lee HJ, Corn RM. Angew Chem Int Ed, 2008, 47: 644–652

    Article  CAS  Google Scholar 

  18. Lee I, Aiay SS, Chen HM, Maruyama A, Wang NL, Melvin MG, Athey BD. Nucleic Acids Res, 2008, 36: e27

    Article  CAS  Google Scholar 

  19. Wegman DW, Krylov SN. Angew Chem Int Ed, 2011, 50: 10335–10339

    Article  CAS  Google Scholar 

  20. Qavi AJ, Bailey RC. Angew Chem Int Ed, 2010, 49: 4608–4611

    Article  CAS  Google Scholar 

  21. Bath J, Turberfield AJ. Nat Nanotech, 2007, 2: 275–284

    Article  CAS  Google Scholar 

  22. Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey MI, Simmel FC. Phys Rev Lett, 2003, 90: 118102

    Article  CAS  Google Scholar 

  23. Patra D, Mishra AK. TrAC-Trend Anal Chem, 2002, 21: 787–798

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, H., Liu, C. et al. Enzyme-free and multiplexed microRNA detection using microRNA-initiated DNA molecular motor. Sci. China Chem. 59, 83–88 (2016). https://doi.org/10.1007/s11426-015-5537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5537-0

Keywords

Navigation