Skip to main content
Log in

Development of small-molecule materials for high-performance organic solar cells

  • Mini Reviews
  • Special Topic Advances in Organic Optoelectronic Molecules & Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the rapid development in recent years, small-molecule organic solar cell is challenging the dominance of its counterpart, polymer solar cell. The top power conversion efficiencies of both single and tandem solar cells based on small molecules have surpassed 9%. In this mini review, achievements of small molecules with impressive photovoltaic performance especially reported in the last two years were highlighted. The relationship between molecular structure and device performance was analyzed, which draws some rules for rational molecular design. Five series of p- and n-type small molecules were selected based on the consideration of their competitiveness of power conversion efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choy WCH. Organic Solar Cells. London: Springer-Verlag, 2013

    Book  Google Scholar 

  2. Shrotriya V. Polymer Solar Cells: Achieving High Efficiency by Device Engineering and Morphology Control. Saarbrücken: LAP Lambert Academic Publishing, 2010

    Google Scholar 

  3. Dou L, You J, Hong Z, Xu Z, Li G, Street RA, Yang Y. 25th Anniversary article: a decade of organic/polymeric photovoltaic research. Adv Mater, 2013, 25: 6642–6671

    Article  CAS  Google Scholar 

  4. He F, Yu L. How far can polymer solar cells go? In need of a synergistic approach. J Phys Chem Lett, 2011, 2: 3102–3113

    Article  CAS  Google Scholar 

  5. Brabec CJ, Gowrisanker S, Hall JJM, Laird D, Jia S, Williams SP. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 2010, 22: 3839–3856

    Article  CAS  Google Scholar 

  6. Boudreault PLT, Leclerc M. Processable low-bandgap polymers for photovoltaic applications. Chem Mater, 2011, 23: 456–469

    Article  CAS  Google Scholar 

  7. Zhang ZG, Wang J. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J Mater Chem, 2012, 22: 4178–4187

    Article  CAS  Google Scholar 

  8. Thompson BC, Fréchet JMJ. Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2007, 47: 58–77

    Article  Google Scholar 

  9. Mishra A, Bauerle P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed, 2012, 51: 2020–2067

    Article  CAS  Google Scholar 

  10. Lin Y, Li Y, Zhan X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev, 2012, 41: 4245–4272

    Article  CAS  Google Scholar 

  11. Chen YS, Wan XJ, Long GK. High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res, 2013, 46: 2645–2655

    Article  CAS  Google Scholar 

  12. Coughlin JE, Henson ZB, Welch GC, Bazan GC. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc Chem Res, 2014, 47: 257–270

    Article  CAS  Google Scholar 

  13. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin Hao, Ade H, Yan H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun, 2014, 5: 5293–5310

    Article  CAS  Google Scholar 

  14. Liao S, Jhuo H, Yeh P, Cheng Y, Li Y, Lee Y, Sharma S, Chen S. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep, 2014, 4: 6813–6819

    Article  CAS  Google Scholar 

  15. Chen J, Cui C, Li Y, Zhou L, Ou Q, Li C, Li Y, Tang J. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater, 2015, 27: 1035–1041

    Article  CAS  Google Scholar 

  16. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Realizing over 10% efficiency in polymer solar cell by device optimization. Sci China Chem, 2015, 58: 248–256

    Article  CAS  Google Scholar 

  17. Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J Am Chem Soc, 2014, 136: 15529–15532

    Article  CAS  Google Scholar 

  18. Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell PT, Chen Y. Small-molecule solar cells with efficiency over 9%. Nat Photon, 2015, 9: 35–41

    Article  CAS  Google Scholar 

  19. Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E, White MJ, Williamson MR, Subbiah J, Ouyang J, Holmes BA, Wong W, Jones JD. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat Commun, 2015, 6: 6013–6021

    Article  Google Scholar 

  20. Sun YM, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater, 2012, 11: 44–48

    Article  CAS  Google Scholar 

  21. Lin LY, Chen YH, Huang ZY, Lin HW, Chou SH, Lin F, Chen CW, Liu YH, Wong KT. A low-energy-gap organic dye for high-performance small-molecule organic solar cells. J Am Chem Soc, 2011, 133: 15822–15825

    Article  CAS  Google Scholar 

  22. Chen YH, Lin LY, Lu CW, Lin F, Huang ZY, Lin HW, Wang PH, Liu YH, Wong KT, Wen JG, Miller DJ, Darling SB. Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization. J Am Chem Soc, 2012, 134: 13616–13623

    Article  CAS  Google Scholar 

  23. Lin HW, Lu CW, Lin LY, Chen YH, Lin WC, Wong KT, Lin F. Pyridine-based electron transporting materials for highly efficient organic solar cells. J Mater Chem A, 2013, 1: 1770–1777

    Article  CAS  Google Scholar 

  24. Lin HW, Chang JH, Huang WC, Lin YT, Lin LY, Lin F, Wong KT, Wang HF, Ho RM, Meng HF. Highly efficient organic solar cells using a solution processed active layer with a small molecule donor and pristine fullerene. J Mater Chem A, 2014, 2: 3709–3714

    Article  CAS  Google Scholar 

  25. Lu HI, Lu CW, Lee YC, Lin HW, Lin LY, Lin F, Chang JH, Wu CI, Wong KT. New molecular donors with dithienopyrrole as the electron-donating group for efficient small-molecule organic solar cells. Chem Mater, 2014, 26: 4361–4367

    Article  CAS  Google Scholar 

  26. Walker B, Kim C, Nguyen TQ. Small molecule solution-processed bulk heterojunction solar cells. Chem Mater, 2011, 23: 470–482

    Article  CAS  Google Scholar 

  27. Loser S, Miyauchi H, Hennek JW, Smith J, Huang C, Facchetti A, Marks TJ. A “zig-zag” naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells. Chem Commun, 2012, 48: 8511–8513

    Article  CAS  Google Scholar 

  28. Li L, Huang Y, Peng J, Cao Y, Peng X. Enhanced performance of solution-processed solar cells based on porphyrin small molecules with a diketopyrrolopyrrole acceptor unit and a pyridine additive. J Mater Chem A, 2013, 1: 2144–2150

    Article  CAS  Google Scholar 

  29. Huang JH, Zhan CL, Zhang X, Zhao Y, Lu ZH, Jia H, Jiang B, Ye J, Zhang SL, Tang AL, Liu YQ, Pei QB, Yao JN. Solution-processed DPP-based small molecule that gives high photovoltaic efficiency with judicious device optimization. ACS Appl Mater Inter, 2013, 5: 2033–2039

    Article  CAS  Google Scholar 

  30. Lin YZ, Ma LC, Li YF, Liu YQ, Zhu DB, Zhan XW. A solution-processable small molecule based on benzodithiophene and diketopyrrolopyrrole for high-performance organic solar cells. Adv Energy Mater, 2013, 3: 1166–1170

    Article  CAS  Google Scholar 

  31. Harschneck T, Zhou NJ, Manley EF, Lou SJ, Yu XG, Butler MR, Timalsina A, Turrisi R, Ratner MA, Chen LX, Chang RPH, Facchetti A, Marks TJ. Substantial photovoltaic response and morphology tuning in benzo[1,2-b:6,5-b′]-dithiophene (bBDT) molecular donors. Chem Commun, 2014, 50: 4099–4101

    Article  CAS  Google Scholar 

  32. Qin H, Li L, Guo F, Su S, Peng J, Cao Y, Peng X. Solution-processed bulk heterojunction solar cells based on a porphyrin small molecule with 7% power conversion efficiency. Energ Environ Sci, 2014, 7: 1397–1401

    Article  CAS  Google Scholar 

  33. Bura T, Leclerc N, Bechara R, Leveque P, Heiser T, Ziessel R. Triazatruxene-diketopyrrolopyrrole dumbbell-shaped molecules as photoactive electron donor for high-efficiency solution processed organic solar cells. Adv Energy Mater, 2013, 3: 1118–1124

    Article  CAS  Google Scholar 

  34. Gao H, Li YQ, Wang LH, Ji CY, Wang Y, Tian WJ, Yang XC, Yin LX. High performance asymmetrical push-pull small molecules end-capped with cyanophenyl for solution-processed solar cells. Chem Commun, 2014, 50: 10251–10254

    Article  CAS  Google Scholar 

  35. Silvestri F, Irwin MD, Beverina L, Facchetti A, Pagani GA, Marks TJ. Efficient squaraine-based solution processable bulk-heterojunction solar cells. J Am Chem Soc, 2008, 130: 17640–17641

    Article  CAS  Google Scholar 

  36. Wei GD, Wang SY, Sun K, Thompson ME, Forrest SR. Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells. Adv Energy Mater, 2011, 1: 184–187

    Article  CAS  Google Scholar 

  37. Wei GD, Xiao X, Wang SY, Zimmerman JD, Sun K, Diev VV, Thompson ME, Forrest SR. Arylamine-based squaraine donors for use in organic solar cells. Nano Lett, 2011, 11: 4261–4264

    Article  CAS  Google Scholar 

  38. Wei GD, Xiao X, Wang SY, Sun K, Bergemann KJ, Thompson ME, Forrest SR. Functionalized squaraine donors for nanocrystalline organic photovoltaics. ACS Nano, 2012, 6: 972–978

    Article  CAS  Google Scholar 

  39. Xiao X, Wei GD, Wang SY, Zimmerman JD, Renshaw CK, Thompson ME, Forrest SR. Small-molecule photovoltaics based on functionalized squaraine donor blends. Adv Mater, 2012, 24: 1956–1960

    Article  CAS  Google Scholar 

  40. Zimmerman JD, Lassiter BE, Xiao X, Sun K, Dolocan A, Gearba R, Vanden Bout DA, Stevenson KJ, Wickramasinghe P, Thompson ME, Forrest SR. Control of interface order by inverse quasi-epitaxial growth of squaraine/fullerene thin film photovoltaics. ACS Nano, 2013, 7: 9268–9275

    Article  CAS  Google Scholar 

  41. Lassiter BE, Zimmerman JD, Forrest SR. Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers. Appl Phys Lett, 2013, 103: 123305

    Article  Google Scholar 

  42. Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Korner C, Leo K, Riede M, Weil M, Tsaryova O, Weiss A, Uhrich C, Pfeiffer M, Bäuerle P. Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small-molecule organic solar cells. Adv Funct Mater, 2011, 21: 897–910

    Article  CAS  Google Scholar 

  43. Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Korner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bauerle P. Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J Am Chem Soc, 2012, 134: 11064–11067

    Article  CAS  Google Scholar 

  44. Liu YS, Wan XJ, Wang F, Zhou JY, Long GK, Tian JG, You JB, Yang Y, Chen YS. Spin-coated small molecules for high performance solar cells. Adv Energy Mater, 2011, 1: 771–775

    Article  CAS  Google Scholar 

  45. Li Z, He GR, Wan XJ, Liu YS, Zhou JY, Long GK, Zuo Y, Zhang MT, Chen YS. Solution processable rhodanine-based small molecule organic photovoltaic cells with a power conversion efficiency of 6. 1%. Adv Energy Mater, 2012, 2: 74–77

    Article  CAS  Google Scholar 

  46. Liu YS, Yang Y, Chen CC, Chen Q, Dou LT, Hong ZR, Li G, Yang Y. Solution-processed small molecules using different electron linkers for high-performance solar cells. Adv Mater, 2013, 25: 4657–4662

    Article  CAS  Google Scholar 

  47. Liu YS, Wan XJ, Wang F, Zhou JY, Long GK, Tian JG, Chen YS. High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv Mater, 2011, 23: 5387–5391

    Article  CAS  Google Scholar 

  48. Zhou JY, Wan XJ, Liu YS, Long GK, Wang F, Li Z, Zuo Y, Li CX, Chen YS. A planar small molecule with dithienosilole core for high efficiency solution-processed organic photovoltaic cells. Chem Mater, 2011, 23: 4666–4668

    Article  CAS  Google Scholar 

  49. Zhou JY, Wan XJ, Liu YS, Zuo Y, Li Z, He GR, Long GK, Ni W, Li CX, Su XC, Chen YS. Small molecules based on benzo[1,2-b:4,5-b′]dithiophene unit for high-performance solution-processed organic solar cells. J Am Chem Soc, 2012, 134: 16345–16351

    Article  CAS  Google Scholar 

  50. Zhou JY, Zuo Y, Wan XJ, Long GK, Zhang Q, Ni W, Liu YS, Li Z, He GR, Li CX, Kan B, Li MM, Chen YS. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Chem Soc, 2013, 135: 8484–8487

    Article  CAS  Google Scholar 

  51. Liu YS, Chen CC, Hong ZR, Gao J, Yang Y, Zhou HP, Dou LT, Li G, Yang Y. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci Rep, 2013, 3: 3356–3363

    Google Scholar 

  52. Patra D, Huang TY, Chiang CC, Maturana ROV, Pao CW, Ho KC, Wei KH, Chu CW. 2-Alkyl-5-thienyl-substituted benzo[1,2-b:4,5-b′] dithiophene-based donor molecules for solution-processed organic solar cells. ACS Appl Mater Inter, 2013, 5: 9494–9500

    Article  CAS  Google Scholar 

  53. Shen SL, Jiang P, He C, Zhang J, Shen P, Zhang Y, Yi YP, Zhang ZJ, Li ZB, Li YF. Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups. Chem Mater, 2013, 25: 2274–2281

    Article  CAS  Google Scholar 

  54. Deng D, Zhang Y, Yuan L, He C, Lu K, Wei Z. Effects of shortened alkyl chains on solution-processable small molecules with oxoalkylated nitrile end-capped acceptors for high-performance organic solar cells. Adv Energy Mater, 2014, 4: 1400538

    Article  Google Scholar 

  55. Wessendorf CD, Schulz GL, Mishra A, Kar P, Ata I, Weidelener M, Urdanpilleta M, Hanisch J, Mena-Osteritz E, Lindén M, Ahlswede E, Bäuerle P. Efficiency improvement of solution-processed dithienopyrrole-based A-D-A oligothiophene bulk-heterojunction solar cells by solvent vapor annealing. Adv Energy Mater, 2014, 4: 1400266

    Article  Google Scholar 

  56. Bai HT, Wang YF, Cheng P, Li YF, Zhu DB, Zhan XW. Acceptordonor-acceptor small molecules based on indacenodithiophene for efficient organic solar cells. ACS Appl Mater Inter, 2014, 6: 8426–8433

    Article  CAS  Google Scholar 

  57. Leong WL, Welch GC, Kaake LG, Takacs CJ, Sun YM, Bazan GC, Heeger AJ. Role of trace impurities in the photovoltaic performance of solution processed small-molecule bulk heterojunction solar cells. Chem Sci, 2012, 3: 2103–2109

    Article  CAS  Google Scholar 

  58. Garcia A, Welch GC, Ratcliff EL, Ginley DS, Bazan GC, Olson DC. improvement of interfacial contacts for new small-molecule bulk-heterojunction organic photovoltaics. Adv Mater, 2012, 24: 5368–5373

    Article  CAS  Google Scholar 

  59. van der Poll TS, Love JA, Nguyen TQ, Bazan GC. Non-basic high-performance molecules for solution-processed organic solar cells. Adv Mater, 2012, 24: 3646–3649

    Article  Google Scholar 

  60. Love JA, Proctor CM, Liu JH, Takacs CJ, Sharenko A, van der Poll TS, Heeger AJ, Bazan GC, Nguyen TQ. Film morphology of high efficiency solution-processed small-molecule solar cells. Adv Funct Mater, 2013, 23: 5019–5026

    Article  CAS  Google Scholar 

  61. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano, 2013, 7: 4569–4577

    Article  CAS  Google Scholar 

  62. Wang DH, Kyaw AKK, Gupta V, Bazan GC, Heeger AJ. Enhanced efficiency parameters of solution-processable small-molecule solar cells depending on ITO sheet resistance. Adv Energy Mater, 2013, 3: 1161–1165

    Article  CAS  Google Scholar 

  63. Gupta V, Kyaw AKK, Wang DH, Chand S, Bazan GC, Heeger AJ. Barium: an efficient cathode layer for bulk-heterojunction solar cells. Sci Rep, 2013, 3: 1965–1970

    Google Scholar 

  64. Xu XY, Kyaw AKK, Peng B, Du QG, Hong L, Demir HV, Wong TKS, Xiong QH, Sun XW. Enhanced efficiency of solution-processed small molecule solar cells upon incorporation of gold nanospheres and nanorods into organic layers. Chem Commun, 2014, 50: 4451–4454

    Article  CAS  Google Scholar 

  65. Liu XF, Sun YM, Hsu BBY, Lorbach A, Qi L, Heeger AJ, Bazan GC. Design and properties of intermediate-sized narrow band-gap conjugated molecules relevant to solution-processed organic solar cells. J Am Chem Soc, 2014, 136: 5697–5708

    Article  CAS  Google Scholar 

  66. Love JA, Nagao I, Huang Y, Kuik M, Gupta V, Takacs CJ, Coughlin JE, Qi L, van der Poll TS, Kramer EJ, Heeger AJ, Nguyen TQ, Bazan GC. Silaindacenodithiophene-based molecular donor: morphological features and use in the fabrication of compositionally tolerant high-efficiency bulk heterojunction solar cells. J Am Chem Soc, 2014, 136: 3597–3606

    Article  CAS  Google Scholar 

  67. Sun Y, Seifter J, Huo L, Yang Y, Hsu BBY, Zhou H, Sun X, Xiao S, Jiang L, Heeger AJ. High-performance solution-processed small-molecule solar cells based on a dithienogermole-containing molecular donor. Adv Energy Mater, 2015, 5: 1400987

    Article  Google Scholar 

  68. Lim K, Lee SY, Song K, Sharma GD, Ko J. Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA [DTS-PyBTTh3]3 for solution-processed bulk hetero-junction organic solar cells. J Mater Chem C, 2014, 2: 8412–8422

    CAS  Google Scholar 

  69. Sonar P, Lim JPF, Chan KL. Organic non-fullerene acceptors for organic photovoltaics. Energy Environ Sci, 2011, 4: 1558–1574

    Article  CAS  Google Scholar 

  70. Lin Y, Zhan X. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater Horiz,. 2014, 1: 470–488

    Article  CAS  Google Scholar 

  71. Eftaiha AF, Sun JP, Hill IG, Welch GC. Recent advances of non-fullerene small molecular acceptors for solution processed bulk heterojunction solar cells. J Mater Chem A, 2014, 2: 1201–1213

    Article  CAS  Google Scholar 

  72. Anthony JE. Small-molecule nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem Mater, 2011, 23: 583–590

    Article  CAS  Google Scholar 

  73. Sullivan P, Duraud A, Hancox I, Beaumont N, Mirri G, Tucker HRJ, Hatton AR, Shipman M, Jones ST. Halogenated boron subphthalocyanines as light harvesting electron acceptors in organic photovoltaics. Adv Energy Mater, 2011, 1: 352–355

    Article  CAS  Google Scholar 

  74. Bloking JT, Han X, Higgs AT, Kastrop JP, Pandey L, Norton JE, Risko C, Chen CE, Bredas JL, McGehee MD, Sellinger A. Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors. Chem Mater, 2011, 23: 5484–5490

    Article  CAS  Google Scholar 

  75. Verreet B, Rand BP, Cheyns D, Hadipour A, Aernouts T, Heremans P, Medina A, Claessens CG, Torres T. A 4% efficient organic solar cell using a fluorinated fused subphthalocyanine dimer as an electron acceptor. Adv Energy Mater, 2011, 1: 565–568

    Article  CAS  Google Scholar 

  76. Zheng YQ, Dai YZ, Zhou Y, Wang JY, Pei J. Rational molecular engineering towards efficient non-fullerene small molecule acceptors for inverted bulk heterojunction organic solar cells. Chem Commun, 2014, 50: 1591–1594

    Article  CAS  Google Scholar 

  77. Sharma GD, Suresh P, Mikroyannidis JA, Stylianakis MM. Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene-pyrene bisimide. J Mater Chem, 2010, 20: 561–567

    Article  CAS  Google Scholar 

  78. Mikroyannidis JA, Suresh P, Sharma GD. Synthesis of a perylene bisimide with acetonaphthopyrazine dicarbonitrile terminal moieties for photovoltaic applications. Synth Met, 2010, 160: 932–938

    Article  CAS  Google Scholar 

  79. Sharenko A, Proctor CM, van der Poll TS, Henson ZB, Nguyen TQ, Bazan GC. A high-performing solution-processed small molecule: perylene diimide bulk heterojunction solar cell. Adv Mater, 2013, 25: 4403–4406

    Article  CAS  Google Scholar 

  80. Singh R, Aluicio-Sarduy E, Kan Z, Ye T, MacKenzie RCI, Keivanidis PE. Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer. J Mater Chem A, 2014, 2: 14348–14353

    Article  CAS  Google Scholar 

  81. Rajaram S, Shivanna R, Kandappa KS, Narayan SK. Nonplanar perylene diimides as potential alternatives to fullerenes in organic solar cells. J Phys Chem Lett, 2012, 3: 2405–2408

    Article  CAS  Google Scholar 

  82. Zhang X, Lu ZH, Ye L, Zhan CL, Hou JH, Zhang SQ, Jiang B, Zhao Y, Huang JH, Zhang SL, Liu Y, Shi Q, Liu YQ, Yao JN. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv Mater, 2013, 25: 5791–5797

    Article  CAS  Google Scholar 

  83. Lu ZH, Jiang B, Zhang X, Tang AL, Chen LL, Zhan CL, Yao JN. Perylene-diimide based non-fullerene solar cells with 4.34% efficiency through engineering surface donor/acceptor compositions. Chem Mater, 2014, 26: 2907–2914

    Article  CAS  Google Scholar 

  84. Zhang X, Zhan C, Yao J. Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process. Chem Mater, 2015, 27: 166–173

    Article  CAS  Google Scholar 

  85. Lin YZ, Wang JY, Dai SX, Li YF, Zhu DB, Zhan XW. A twisted dimeric perylene diimide electron acceptor for efficient organic solar cells. Adv Energy Mater, 2014, 4: 1400420

    Google Scholar 

  86. Lin YZ, Wang YF, Wang JY, Hou JH, Li YF, Zhu DB, Zhan XW. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. Adv Mater, 2014, 26: 5137–5142

    Article  CAS  Google Scholar 

  87. Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lai J, Hu H, Yan H. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ Sci, 2015, 8: 520–525

    Article  CAS  Google Scholar 

  88. Yan Q, Zhou Y, Zheng Y, Pei J, Zhao D. Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives. Chem Sci, 2013, 4: 4389–4394

    Article  CAS  Google Scholar 

  89. Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai J, Hu H, Ma T, Hu R, Yu D, Huang X, Tang B, Yan H. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv Mater, 2015, 27: 1015–1020

    Article  CAS  Google Scholar 

  90. Jiang W, Ye L, Li X. G, Xiao CY, Tan F, Zhao WC, Hou JH, Wang ZH. Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chem Commun, 2014, 50: 1024–1026

    Article  CAS  Google Scholar 

  91. Ye L, Jiang W, Zhao W, Zhang S, Qian D, Wang Z, Hou J. Selecting a donor polymer for realizing favorable morphology in efficient non-fullerene acceptor-based solar cells. Small, 2014, 10: 4658–4663

    Article  CAS  Google Scholar 

  92. Zang Y, Li CZ, Chueh CC, Williams ST, Jiang W, Wang ZH, Yu JS, Jen AKY. Integrated molecular interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Adv Mater, 2014, 26: 5708–5714

    Article  CAS  Google Scholar 

  93. Zhong Y, Trinh MT, Chen R, Wang W, Khlyabich PP, Kumar B, Xu Q, Nam CY, Sfeir MY, Black C, Steigerwald ML, Loo YL, Xiao S, Ng F, Zhu XY, Nuckolls C. Efficient organic solar cells with helical perylene diimide electron acceptors. J Am Chem Soc, 2014, 136: 15215–15221

    Article  CAS  Google Scholar 

  94. Lin Y, Zhang Z, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ Sci, 2015, 8: 610–616

    Article  CAS  Google Scholar 

  95. Lin Y, Wang J, Zhang Z, Bai H, Li Y, Zhu D, Zhan X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  Google Scholar 

  96. Cnops K, Rand BP, Cheyns D, Verreet B, Empl MA, Heremans P. 8.4% Efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat Commun, 2014, 5: 3406–3411

    Article  Google Scholar 

  97. Mishra A, Popovic D, Vogt A, Kast H, Leitner T, Walzer K, Pfeiffer M, Mena-Osteritz E, Bäuerle P. A-D-A-type S,N-heteropentacenes: next-generation molecular donor materials for efficient vacuum-processed organic solar cells. Adv Mater, 2014, 26: 7217–7223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Zhu, X. Development of small-molecule materials for high-performance organic solar cells. Sci. China Chem. 58, 922–936 (2015). https://doi.org/10.1007/s11426-015-5418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5418-6

Keywords

Navigation