Skip to main content
Log in

Direct silylation reactions of inert C-H bonds via transition metal catalysis

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In the past thirty years, transition metal catalyzed silylation of inert C-H bonds has attracted intensive attention due to the importance and wide use of organosilicon compounds. In this review, the silylation reactions of inert C-H bonds catalyzed by transition metal complexes of Ir, Rh, Ru, Pt, Pd, Ni, and Sc, and the strategies utilized to access the site-selective C-H silylation products have been summarized. Furthermore, the mechanisms of C-H silylation reactions have been discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions. Weinheim: Wiley-VCH, 1998. 421

    Book  Google Scholar 

  2. Denmark SE, Sweis RF. Design and implementation of new, silicon-based, cross-coupling reactions: importance of silicon-oxygen bonds. Acc Chem Res, 2002, 35: 835–846

    Article  CAS  Google Scholar 

  3. Elbing M, Bazan GC. A new design strategy for organic optoelectronic materials by lateral boryl substitution. Angew Chem Int Ed, 2008, 47: 834–838

    Article  CAS  Google Scholar 

  4. Kumagai T, Itsuno S. Asymmetric allylation polymerization of bis(allylsilane) and dialdehyde containing arylsilane structure. Macromolecules, 2002, 35: 5323–5325

    Article  CAS  Google Scholar 

  5. Franz AK. The synthesis of biologically active organosilicon small molecules. Curr Opin Drug Discov Devel, 2007, 10: 654–671

    CAS  Google Scholar 

  6. Gluyas JB, Burschka C, Dorrich S, Vallet J, Gronemeyer H, Tacke R. Disila-analogues of the synthetic retinoids EC23 and TTNN: synthesis, structure and biological evaluation. Org Bio Chem, 2012, 10: 6914–6929

    Article  CAS  Google Scholar 

  7. Kakiuchi F, Chatani N. Catalytic methods for C-H bond functionalization: application in organic synthesis. Adv Synth Catal, 2003, 345: 1077–1101

    Article  CAS  Google Scholar 

  8. Hartwig JF. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations. Acc Chem Res, 2012, 45: 864–873

    Article  CAS  Google Scholar 

  9. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Beyond directing groups: transition-metal-catalyzed C-H activation of simple arenes. Angew Chem Int Ed, 2012, 51: 10236–10254

    Article  CAS  Google Scholar 

  10. La Pointe AM, Rix FC, Brookhart M. Mechanistic studies of palladium( II)-catalyzed hydrosilation and dehydrogenative silation reactions. J Am Chem Soc, 1997, 119: 906–917

    Article  Google Scholar 

  11. Lu B, Falck JR. Iridium- catalyzed (Z)-trialkylsilylation of terminal olefins. J Org Chem, 2010, 75: 1701–1705

    Article  CAS  Google Scholar 

  12. Jiang Y, Blacque O, Fox T, Frech CM, Berke H. Highly selective dehydrogenative silylation of alkenes catalyzed by rhenium complexes. Chem Eur J, 2009, 15: 2121–2128

    Article  CAS  Google Scholar 

  13. Gustavson WA, Epstein PS, Curtis MD. Homogeneous activation of the carbon-hydrogen bond. Formation of phenylsiloxanes from benzene and silicon hydrides. Organometallics, 1982, 1: 884–885

    Article  CAS  Google Scholar 

  14. Ishiyama T, Sato K, Nishio Y, Miyaura N. Direct synthesis of aryl halosilanes through iridium(I)-catalyzed aromatic C-H silylation by disilanes. Angew Chem Int Ed, 2003, 42: 5346–5348

    Article  CAS  Google Scholar 

  15. Saiki T, Nishio Y, Ishiyama T, Miyaura N. Improvements of efficiency and regioselectivity in the iridium(I)-catalyzed aromatic C-H silylation of arenes with fluorodisilanes. Organometallics, 2006, 25: 6068–6073

    Article  CAS  Google Scholar 

  16. Ishiyama T, Saiki T, Kishida E, Sasaki I, Ito H, Miyaura N. Aromatic C-H silylation of arenes with 1-hydrosilatrane catalyzed by an iridium(I)/2,9-dimethylphenanthroline (dmphen) complex. Org Bio Chem, 2013, 11: 8162–8165

    Article  CAS  Google Scholar 

  17. Ishiyama T, Sato K, Nishio Y, Saiki T, Miyaura N. Regioselective aromatic C-H silylation of five-membered heteroarenes with fluorodisilanes catalyzed by iridium(I) complexes. Chem Commun, 2005, 40: 5065–5067

    Article  Google Scholar 

  18. Lu B, Falck JR. Efficient iridium-catalyzed C-H functionalization/ silylation of heteroarenes. Angew Chem Int Ed, 2008, 47: 7508–7510

    Article  CAS  Google Scholar 

  19. Simmons EM, Hartwig JF. Iridium-catalyzed arene ortho-silylation by formal hydroxyl-directed C-H activation. J Am Chem Soc, 2010, 132: 17092–17095

    Article  CAS  Google Scholar 

  20. Li Q, Driess M, Hartwig JF. Iridium-catalyzed regioselective silylation of aromatic and benzylic C-H bonds directed by a secondary amine. Angew Chem Int Ed, 2014, 53: 8471–8474

    Article  CAS  Google Scholar 

  21. Kuznetsov A, Gevorgyan V. General and practical one-pot synthesis of dihydrobenzosiloles from styrenes. Org Lett, 2012, 14: 914–917

    Article  CAS  Google Scholar 

  22. Kuznetsov A, Onishi Y, Inamoto Y, Gevorgyan V. Fused heteroaromatic dihydrosiloles: synthesis and double-fold modification. Org Lett, 2013, 15: 2498–2501

    Article  CAS  Google Scholar 

  23. Choi G, Tsurugi H, Mashima K. Hemilabile N-xylyl-N'-methylperimidine carbene iridium complexes as catalysts for C-H activation and dehydrogenative silylation: dual role of N-xylyl moiety for ortho- C-H bond activation and reductive bond cleavage. J Am Chem Soc, 2013, 135: 13149–13161

    Article  CAS  Google Scholar 

  24. Manna K, Zhang T, Lin W. Postsynthetic metalation of bipyridylcontaining metal-organic frameworks for highly efficient catalytic organic transformations. J Am Chem Soc, 2014, 136: 6566–6569

    Article  CAS  Google Scholar 

  25. Sakakura T, Tokunaga Y, Sodeyama T, Tanaka M. Catalytic C-H activation. Silylation of arenes with hydrosilane or disilane by RhCl (CO)(PMe3)2 under irradiation. Chem Lett, 1987, 12: 2375–2378

    Article  Google Scholar 

  26. Tobisu M, Ano Y, Chatani N. Rhodium-catalyzed silylation of aromatic carbon-hydrogen bonds in 2-arylpyridines with disilane. Chem Asian J, 2008, 3: 1585–1591

    Article  CAS  Google Scholar 

  27. Ureshino T, Yoshida T, Kuninobu Y, Takai K. Rhodium-catalyzed synthesis of silafluorene derivatives via cleavage of silicon-hydrogen and carbon-hydrogen bonds. J Am Chem Soc, 2010, 132: 14324–14326

    Article  CAS  Google Scholar 

  28. Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Rhodium-catalyzed asymmetric synthesis of spirosilabifluorene derivatives. Angew Chem Int Ed, 2013, 52: 1520–1522.

    Article  CAS  Google Scholar 

  29. Liang Y, Zhang S, Xi Z. Palladium- catalyzed synthesis of benzosilolo[2,3-b]indoles via cleavage of a C(sp3)-Si bond and consequent intramolecular C(sp2)-Si coupling. J Am Chem Soc, 2011, 133: 9204–9207

    Article  CAS  Google Scholar 

  30. Liang Y, Geng W, Wei J, Xi Z. Palladium-catalyzed intermolecular coupling of 2-silylaryl bromides with alkynes: synthesis of benzosiloles and heteroarenefused siloles by catalytic cleavage of the C(sp3)-Si bond. Angew Chem Int Ed, 2012, 51: 1934–1937

    Article  CAS  Google Scholar 

  31. Onoe M, Baba K, Kim Y, Kita Y, Tobisu M, Chatani N. Rhodium-catalyzed carbon-silicon bond activation for synthesis of benzosilole derivatives. J Am Chem Soc, 2012, 134: 19477–19488

    Article  CAS  Google Scholar 

  32. Meng T, Ouyang K, Xi Z. Palladiumcatalyzed cleavage of the Me-Si bond in ortho-trimethylsilyl aryltriflates: synthesis of benzosilole derivatives from ortho-trime-thylsilyl aryltriflates and alkynes. RSC Adv, 2013, 3: 14273–14276

    Article  CAS  Google Scholar 

  33. Cheng C, Hartwig JF. Rhodium-catalyzed intermolecular C-H silylation of arenes with high steric regiocontrol. Science, 2014, 343: 853–857

    Article  CAS  Google Scholar 

  34. Cheng C, Hartwig JF. Mechanism of the rhodiumcatalyzed silylation of arene C-H bonds. J Am Chem Soc, 2014, 136: 12064–12072

    Article  CAS  Google Scholar 

  35. Kakiuchi F, Matsumoto M, Sonoda M, Fukuyama T, Chatani N, Murai S, Furukawa N, Seki Y. A new synthetic route to heteroarylsilanes via ruthenium-catalyzed C-H/SiR3 coupling. Chem Lett, 2000, 29: 750–751

    Article  Google Scholar 

  36. Kakiuchi F, Igi K, Matsumoto M, Chatani N, Murai S. Ruthenium-catalyzed dehydrogenative silylation of aryloxazolines with hydrosilanes via C-H bond cleavage. Chem Lett, 2001, 30: 422–423

    Article  Google Scholar 

  37. Kakiuchi F, Igi K, Matsumoto M, Hayamizu T, Chatani N, Murai S. A new chelation-assistance mode for a ruthenium-catalyzed silylation at the C-H bond in aromatic ring with hydrosilanes. Chem Lett, 2002, 31: 396–396

    Article  Google Scholar 

  38. Kakiuchi F, Matsumoto M, Tsuchiya K, Igi K, Hayamizu T, Chatani N, Murai S. The ruthenium-catalyzed silylation of aromatic C-H bonds with triethylsilane. J Organomet Chem, 2003, 686: 134–144

    Article  CAS  Google Scholar 

  39. Ihara H, Suginome M. Easily attachable and detachable orthodirecting agent for arylboronic acids in ruthenium-catalyzed aromatic C-H silylation. J Am Chem Soc, 2009, 131: 7502–3

    Article  CAS  Google Scholar 

  40. Koyanagi M, Eichenauer N, Ihara H, Yamamoto T, Suginome M. Anthranilamide-masked o-iodoarylboronic acids as coupling modules for iterative synthesis of ortho-linked oligoarenes. Chem Lett, 2013, 42: 541–543

    Article  CAS  Google Scholar 

  41. Wang C, Glorius F. Controlled iterative cross-couplings: on the way to the automation of organic synthesis. Angew Chem Int Ed, 2009, 48: 5240–5244

    Article  CAS  Google Scholar 

  42. Klare HFT, Oestreich M, Ito J, Nishiyama H, Ohki Y, Tatsumi K. Cooperative catalytic activation of Si-H bonds by a polar Ru-S bond: regioselective low-temperature C-H silylation of indoles under neutral conditions by a Friedel-Crafts mechanism. J Am Chem Soc, 2011, 133: 3312–3315

    Article  CAS  Google Scholar 

  43. Sakurai T, Matsuoka Y, Hanataka T, Fukuyama N, Namikoshi T, Watanabe S, Murata M. Ruthenium-catalyzed ortho-selective aromatic C-H silylation: acceptorless dehydrogenative coupling of hydrosilanes. Chem Lett, 2012, 41: 374–376

    Article  CAS  Google Scholar 

  44. Uchimaru Y, El Sayed AMM, Tanaka M. Selective arylation of a silicon-hydrogen bond in o-bis(dimethylsilyl)benzene via carbonhydrogen bond activation of arenes. Organometallics, 1993, 12: 2065–2069

    Article  CAS  Google Scholar 

  45. Williams NA, Uchimaru Y, Tanaka M. Platinum catalysed regioselective ortho-silylation of benzylideneamines via intramolecular C-H activation. J Chem Soc Chem Commun, 1995: 1129–1130

    Google Scholar 

  46. Williams NA, Uchimaru Y, Tanaka M. Palladium or platinum complex catalysed reactions of carbonyl and imine compounds with disilanes. Dalton Trans, 2003: 236–243

    Google Scholar 

  47. Tsukada N, Hartwig JF. Intermolecular and intramolecular, platinumcatalyzed, acceptorless dehydrogenative coupling of hydrosilanes with aryl and aliphatic methyl C-H bonds. J Am Chem Soc, 2005, 127: 5022–5023

    Article  CAS  Google Scholar 

  48. Murata M, Fukuyama N, Wada JI, Watanabe S, Masuda Y. Platinumcatalyzed aromatic C-H silylation of arenes with 1,1,1,3,5,5,5-heptamethyltrisiloxane. Chem Lett, 2007, 36: 910–911

    Article  CAS  Google Scholar 

  49. Oyamada J, Nishiura M, Hou Z. Scandium-catalyzed silylation of aromatic C-H bonds. Angew Chem Int Ed, 2011, 50: 10720–10723

    Article  CAS  Google Scholar 

  50. Ishikawa M, Okazaki S, Naka A, Sakamoto H. Nickel-catalyzed reactions of 3,4-benzo-1,1,2,2-tetraethyl-1,2-disilacyclobutene with aromatic compounds. Organometallics, 1992, 11: 4135–4139

    Article  CAS  Google Scholar 

  51. Djurovich PI, Dolich AR, Berry DH. Transfer dehydrogenative coupling of triethylsilane catalysed by ruthenium and rhodium complexes. A new Si-C bond forming process. J Chem Soc Chem Commun, 1994: 1897–1898

    Google Scholar 

  52. Sadow AD, Tilley TD. Catalytic functionalization of hydrocarbons by sigma-bond-metathesis chemistry: dehydrosilylation of methane with a scandium catalyst. Angew Chem Int Ed, 2003, 42: 803–805

    Article  CAS  Google Scholar 

  53. Kakiuchi F, Tsuchiya K, Matsumoto M, Mizushima E, Chatani N. Ru3(CO)12-catalyzed silylation of benzylic C-H bonds in arylpyridines and arylpyrazoles with hydrosilanes via C-H bond cleavage. J Am Chem Soc, 2004, 126: 12792–12793

    Article  CAS  Google Scholar 

  54. Larsson JM, Zhao TSN, Szabó KJ. Palladium-catalyzed oxidative allylic C-H silylation. Org Lett, 2011, 13: 1888–1891

    Article  CAS  Google Scholar 

  55. Ihara H, Ueda A, Suginome M. Ruthenium-catalyzed C-H silylation of methylboronic acid using a removable a-directing modifier on the boron atom. Chem Lett, 2011, 40: 916–918

    Article  CAS  Google Scholar 

  56. Simmons EM, Hartwig JF. Catalytic functionalization of unactivated primary C-H bonds directed by an alcohol. Nature, 2012, 483: 70–73

    Article  CAS  Google Scholar 

  57. Li B, Driess M, Hartwig JF. Iridium-catalyzed regioselective silylation of secondary alkyl C-H bonds for the synthesis of 1,3-diols. J Am Chem Soc, 2014, 136: 6586–6589

    Article  CAS  Google Scholar 

  58. Frihed TG, Heuckendorff M, Pedersen CM, Bols M. Easy access to L-mannosides and L-galactosides by using C-H activation of the corresponding 6-deoxysugars. Angew Chem Int Ed, 2012, 51: 12285–12288

    Article  CAS  Google Scholar 

  59. Mita T, Michigami K, Sato Y. Sequential protocol for C(sp3)-H carboxylation with CO2: transition-metal-catalyzed benzylic C-H silylation and fluoride-mediated carboxylation. Org Lett, 2012, 14: 3462–3465

    Article  CAS  Google Scholar 

  60. Mita T, Michigami K, Sato Y. Iridium- and rhodiumcatalyzed dehydrogenative silylations of C(sp3)-H bonds adjacent to a nitrogen atom using hydrosilanes. Chem Asian J, 2013, 8: 2970–2973

    Article  CAS  Google Scholar 

  61. Kuninobu Y, Nakahara T, Takeshima H, Takai K. Rhodium-catalyzed intramolecular silylation of unactivated C(sp3)-H bonds. Org Lett, 2013, 15: 426–428

    Article  CAS  Google Scholar 

  62. Ghavtadze N, Melkonyan FS, Gulevich AV, Huang C, Gevorgyan AV. Conversion of 1-alkenes into 1,4-diols through anauxiliarymediated formal homoallylic C-H oxidation. Nat Chem, 2014, 6: 122–125

    Article  CAS  Google Scholar 

  63. Wang C. Manganese-mediated C-C bond formation via C-H activation: from stoichiometry to catalysis. Synlett, 2013, 24: 1606–1613

    Article  CAS  Google Scholar 

  64. White MC. Adding aliphatic C-H bond oxidations to synthesis. Science, 2012, 335: 807–809

    Article  CAS  Google Scholar 

  65. Zhang C, Tang C, Jiao N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem Soc Rev, 2012, 41: 3464–3484

    Article  CAS  Google Scholar 

  66. Sun CL, Li BJ, Shi ZJ. Direct C-H transformation via iron catalysis. Chem Rev, 2011, 111: 1293–1314

    Article  CAS  Google Scholar 

  67. Wendlandt AE, Suess AM, Stahl SS. Copper-catalyzed aerobic oxidative C-H functionalizations: trends and mechanistic insights. Angew Chem Int Ed, 2011, 50: 11062–11087

    Article  CAS  Google Scholar 

  68. Yoshikai N. Cobaltcatalyzed, chelation-assisted C-H bond functionalization. Synlett, 2011, 8: 1047–1051

    Article  Google Scholar 

  69. Nakamura E, Yoshikai N. Low-valent ironcatalyzed C-C bond formation-addition, substitution, and C-H bond activation. J Org Chem, 2010, 75: 6061–6067

    Article  CAS  Google Scholar 

  70. Li CJ. Crossdehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. Acc Chem Res, 2009, 42: 335–344

    Article  CAS  Google Scholar 

  71. Kulkarni AA, Daugulis O. Direct conversion of carbon-hydrogen to carbon-carbon bonds by first row transition metal catalysis. Synthesis, 2009: 4087–4109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congyang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, C. Direct silylation reactions of inert C-H bonds via transition metal catalysis. Sci. China Chem. 58, 1266–1279 (2015). https://doi.org/10.1007/s11426-015-5375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5375-0

Keywords

Navigation