Skip to main content
Log in

CsOH catalyzed aerobic oxidative synthesis of p-quinols from multi-alkyl phenols under mild conditions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

p-Quinols are ubiquitous structural motifs of various natural products and pharmaceutical compounds, and versatile building blocks in synthetic chemistry. The reported methods for the synthesis of p-quinol require stoichiometric amounts of oxidants. Molecular oxygen is considered as an ideal oxidant due to its natural, inexpensive, and environmentally friendly characteristics. During the ongoing research of C-H bond hydroxylation, we found that multi-alkyl phenols could react with molecular oxygen under mild conditions. Herein, we describe an efficient oxidative de-aromatization of multi-alkyl phenols to p-quinols. 1 atm of molecular oxygen was used as the oxidant. Many multi-alkyl phenols could react smoothly at room temperature. Isotopic labeling experiment was also performed, and the result proved that the oxygen atom in the produced hydroxyl group is from molecular oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X, Porco JA. Synthesis of the tetracyclic core of the tetrapetalones through transannular oxidative [4+3] cyclization. Angew Chem Int Ed, 2005, 44: 3067–3071

    Article  CAS  Google Scholar 

  2. Zilbeyaz K, Sahin E, Kilic H. Synthesis of enantiomerically pure analogues of the meta-substituted aniline antibiotics. Tetrahedron: Asymmetry, 2007, 18: 791–796

    Article  CAS  Google Scholar 

  3. Patil AD, Freyer AJ, Killmer L, Offen P, Carte B, Jurewiz AJ, Johnson RK. Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeletons from the sponge dysidea frondosa: inhibitors of interleukin-8 receptors. Tetrahedron, 1997, 53: 5047–5060

    Article  CAS  Google Scholar 

  4. Ata A, Kerr RG, Moya CE, Jacobs RS. Identification of anti-inflammatory diterpenes from the marine gorgonian Pseudopterogorgia elisabethae. Tetrahedron, 2003, 59: 4215–4222

    Article  CAS  Google Scholar 

  5. García-García C, Redondo MC, Ribagorda M, Carreño MC. Reactions of p-quinols with aldehydes and imines: stereoselective access to polyheterobicyclic and tricyclic systems. Eur J Org Chem, 2014, 33: 7377–7388

    Article  Google Scholar 

  6. Baldwin JE, Adlington RM, Sham VWW, Marquez R, Bulger PG. Biomimetic synthesis of (±)-aculeatin D. Tetrahedron, 2005, 61: 2353–2363

    Article  CAS  Google Scholar 

  7. Redondo MC, Ribagorda M, Carreño MC. Exploring Morita-Baylis-Hillman reactions of p-quinols. Org Lett, 2010, 12: 568–571

    Article  CAS  Google Scholar 

  8. Barradas S, Carreño MC, González-López M, Latorre A, Urbano A. Direct stereocontrolled synthesis of polyoxygenated hydrobenzofurans and hydrobenzopyrans from p-peroxy quinols. Org Lett, 2007, 9: 5019–5022

    Article  CAS  Google Scholar 

  9. Berry JM, Bradshaw TD, Fichtner I, Ren R, Schwalbe CH, Wells G, Chew EH, Stevens MFG, Westwell AD. Quinols as novel therapeutic agents. 2. 4-(1-Arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2,5-dien-1-ones and related agents as potent and selective antitumor agents. J Med Chem, 2005, 48: 639–644

    Article  CAS  Google Scholar 

  10. McCarroll AJ, Bradshaw TD, Westwell AD, Mattews CS, Stevens MFG. Quinols as novel therapeutic agents. 7. Synthesis of antitumor 4-[1-(arylsulfonyl-1H-indol-2-yl)]-4-hydroxycyclohexa-2,5-dien-1-ones by sonogashira reactions. J Med Chem, 2007, 50: 1707–1710

    Article  CAS  Google Scholar 

  11. Capes A, Patterson S, Wyllie S, Hallyburton I, Collie IT, McCarroll AJ, Stevens MFG, Frearson JA, Wyatt PG, Fairlamb AH, Gilbert IH. Quinol derivatives as potential trypanocidal agents. Bioorg Med Chem, 2012, 20: 1607–1615

    Article  CAS  Google Scholar 

  12. Wells G, Berry JM, Bradshaw TD, Burger AM, Seaton A, Wang B, Westwell AD, Stevens MFG. 4-Substituted 4-hydroxycyclohexa-2,5-dien-1-ones with selective activities against colon and renal cancer cell lines. J Med Chem, 2003, 46: 532–541

    Article  CAS  Google Scholar 

  13. Magdziak D, Meek SJ, Pettus TRR. Cyclohexadienone ketals and quinols: four building blocks potentially useful for enantioselective synthesis. Chem Rev, 2004, 104: 1383–1429

    Article  CAS  Google Scholar 

  14. Quideau S, Pouységu L, Deffieux D. Oxidative dearomatization of phenols: why, how and what for? Synlett, 2008, 4: 467–495

    Article  Google Scholar 

  15. Pelter A, Elgendy SMA. Phenolic oxidations with phenyliodonium diacetate. J Chem Soc, Perkin Trans 1, 1993: 1891–1896

    Google Scholar 

  16. Pitsinos EN, Moutsos VI, Vageli O. Synthesis of enantiopure (S)-7-hydroxy-3-amino-3,4-dihydro-2H-1-benzopyran en route to (+)-scyphostatin. Tetrahedron Lett, 2007, 48: 1523–1526

    Article  CAS  Google Scholar 

  17. Moriarty RM, Prakash O. Oxidation of phenolic compounds with organohypervalent iodine reagents. Org React, 2001, 57: 327–415

    CAS  Google Scholar 

  18. Parra A, Reboredo S. Chiral hypervalent iodine reagents: synthesis and reactivity. Chem Eur J, 2013, 19: 17244–17260

    Article  CAS  Google Scholar 

  19. Zheng Z, Zhang-negrerie D, Du Y, Zhao K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci China Chem, 2014, 57: 189–214

    Article  CAS  Google Scholar 

  20. McKillop A, Perry DH, Edwards M. Antus S, Farkas L, Nogradi M, Taylor EC. Thallium in organic synthesis. XLII. Direct oxidation of 4-substituted phenols to 4,4-disubstituted cyclohexa-2,5-dienones using thallium(III) nitrate. J Org Chem, 1976, 41: 282–287

    Article  CAS  Google Scholar 

  21. Milić DR, Gašić MJ, Muster W, Csanádi JJ, Šolaja BA. The synthesis and biological evaluation of a-ring substituted steroidal p-quinones. Tetrahedron, 1997, 53: 14073–14084

    Article  Google Scholar 

  22. Šolaja BA, Milić DR, Gašić MJ. A novel m-CPBA oxidation: p-quinols and epoxyquinols from phenols. Tetrahedron Lett, 1996, 37: 3765–3768

    Article  Google Scholar 

  23. Omura K. p-Quinols and p-quinol ethers from 2,4,6-trialkylphenols. Synthesis, 2010, 2: 208–210

    Article  Google Scholar 

  24. Becker HD, Gustafsson K. Oxidation of sterically hindered phenols by periodic acid. J Org Chem 1979, 44: 428–432

    Article  CAS  Google Scholar 

  25. Sels BF, De Vos DE, Jacobs PA. Bromide-assisted oxidation of substituted phenols with hydrogen peroxide to the corresponding p-quinol and p-quinol ethers over WO4 2−-exchanged layered double hydroxides. Angew Chem Int Ed, 2005, 44: 310–313

    Article  CAS  Google Scholar 

  26. Nardello V, Bogaert S, Alsters PL, Aubry JM. Singlet oxygen generation from H2O2/MoO4 2−: peroxidation of hydrophobic substrates in pure organic solvents. Tetrahedron Lett, 2002, 43: 8731–8734

    Article  CAS  Google Scholar 

  27. Carreño MC, González-López M, Urbano A. Oxidative de-aromatization of para-alkyl phenols into para-peroxyquinols and para-quinols mediated by oxone as a source of singlet oxygen. Angew Chem Int Ed, 2006, 45: 2737–2741

    Article  Google Scholar 

  28. Yakura T, Omoto M, Yamauchi Y, Tian Y, Ozono A. Hypervalent iodine oxidation of phenol derivatives using a catalytic amount of 4-iodophenoxyacetic acid and oxone as a co-oxidant. Tetrahedron, 2010, 66: 5833–5840

    Article  CAS  Google Scholar 

  29. Yakura T, Omoto M. Efficient synthesis of p-quinols using catalytic hypervalent iodine oxidation of 4-arylphenols with 4-iodophenoxy-acetic acid and oxone. Chem Pharm Bull, 2009, 57: 643–645

    Article  CAS  Google Scholar 

  30. Crandall JK, Zucco M, Kirsch RS, Coppert DM. The formation of orthoquinones in the dimethyldioxirane oxidation of phenols. Tetrahedron Lett, 1991, 32: 5441–5444

    Article  CAS  Google Scholar 

  31. Loginova IV, Chukicheva IY, Kuchin AV. Oxidation of substituted phenols with chlorine dioxide. Russ J Org Chem, 2011, 47: 1501–1503

    Article  CAS  Google Scholar 

  32. Prokai-Tatrai K, Rivera-Portalatin NM, Rauniyar N, Prokai L. A facile microwave-assisted synthesis of p-quinols by lead(IV) acetate oxidation. Lett Org Chem, 2007, 4: 265–267

    Article  CAS  Google Scholar 

  33. Adam W, Kiliç H, Saha-Möller CR. An efficient regioselective and diastereoselective synthesis of the epoxy-quinol functionality as building block for the manumycin antibiotics by the sequence of photooxygenation, reduction and Weitz-Scheffer epoxidation. Synlett, 2002, 3: 510–512

    Article  Google Scholar 

  34. Bakshi R, Mathur P. Organo-peroxyl compounds via catalytic oxidation of a hindered phenol and aniline utilizing new manganese(II) bis benzimidazole diamide based complexes. Inorg Chim Aata, 2010, 363: 3477–3488

    Article  CAS  Google Scholar 

  35. DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev, 2002, 233–234: 351–371

    Article  Google Scholar 

  36. Shi Z, Zhang C, Tang C, Jiao N. Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem Soc Rev, 2012, 41: 3381–3430

    Article  CAS  Google Scholar 

  37. Wu W, Jiang H. Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen. Acc Chem Res, 2012, 45: 1736–1748

    Article  CAS  Google Scholar 

  38. Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Aerobic copper-catalyzed organic reactions. Chem Rev, 2013, 113: 6234–6458

    Article  CAS  Google Scholar 

  39. Ryland BL, Stahl SS. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angew Chem Int Ed, 2014, 53: 8824–8838

    Article  CAS  Google Scholar 

  40. Huang X, Li X, Zou M, Song S, Tang C, Yuan Y, Jiao N. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air. J Am Chem Soc, 2014, 136: 14858–14865

    Article  CAS  Google Scholar 

  41. Tang C, Jiao N. Copper-catalyzed aerobic oxidative C-C bond cleavage for C-N bond formation: from ketones to amides. Angew Chem Int Ed, 2014, 53: 6528–6532

    Article  CAS  Google Scholar 

  42. Zhang C, Feng P, Jiao N. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to a-ketoesters. J Am Chem Soc, 2013, 135: 15257–15262

    Article  CAS  Google Scholar 

  43. Wang T, Jiao N. TEMPO-catalyzed aerobic oxygenation and nitrogenation of olefins via C=C double bond cleavage. J Am Chem Soc, 2013, 135: 11692–11695

    Article  CAS  Google Scholar 

  44. Su Y, Sun X, Wu G, Jiao N. Catalyst-controlled highly selective coupling and oxygenation of olefins: a direct approach to alcohols, ketones and diketones. Angew Chem Int Ed, 2013, 52: 9808–9812

    Article  CAS  Google Scholar 

  45. Yan Y, Feng P, Zheng QZ, Liang YF, Lu J, Jiao N. PdCl2 and NHPI cocatalyzed Csp2-H hydroxylation via dioxygen activation. Angew Chem Int Ed, 2013, 52: 5827–5831

    Article  CAS  Google Scholar 

  46. Liang YF, Jiao N. Highly efficient C-H hydroxylation of carbonyl compounds with oxygen under mild conditions. Angew Chem Int Ed, 2014, 53: 548–552

    Article  CAS  Google Scholar 

  47. Godula K, Sames D. C-H bond functionalization in complex organic synthesis. Science, 2006, 312: 67–72

    Article  CAS  Google Scholar 

  48. Crabtree RH. Alkane C-H activation and functionalization with homogenous transition metal catalysts: a century of progress—a new millennium in prospect. J Chem Soc Dalton Trans, 2001: 2437–2450

    Google Scholar 

  49. Engle KM, Yu JQ. Transition metal-catalyzed C-H functionalization: synthetically enabling reactions for building molecular complexity. In: Ding K, Dai LX, Eds. Organic Chemistry-Breakthroughs and Perspectives. Weinheim: Wiley, 2012

    Google Scholar 

  50. Li BJ, Shi ZJ. From C(sp2)-H to C(sp3)-H: systematic studies on transition metal-catalyzed oxidative C-C formation. Chem Soc Rev, 2012, 41: 5588–5598

    Article  CAS  Google Scholar 

  51. Engle KM, Mei TS, Wasa M, Yu JQ. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc Chem Res, 2012, 45: 788–802

    Article  CAS  Google Scholar 

  52. Neufeldt SR, Sanford MS. Controlling site selectivity in palladium-catalyzed C-H bond functionalization. Acc Chem Res, 2012, 45: 936–946

    Article  CAS  Google Scholar 

  53. Wencel-Delord J, Glorius F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem, 2013, 5: 369–375

    Article  CAS  Google Scholar 

  54. Zheng QZ, Jiao N. Transition-metal-catalyzed ketone-directed ortho-C-H functionalization reactions. Tetrahedron Lett, 2014, 55: 1121–1126

    Article  CAS  Google Scholar 

  55. Rao Y, Shan G, Yang X. Some recent advances in transition-metal-catalyzed ortho sp2 C-H functionalization using Ru, Rh, and Pd. Sci China Chem, 2014, 57: 930–944

    Article  CAS  Google Scholar 

  56. Ichikawa Y, Yamanaka Y, Suzuki N, Naruchi T, Kobayashi O, Tsuruta H. A new process for the production of trimethylhydroquinone. Ind Eng Chem Prod Res Dev, 1979, 18: 373–375

    Article  CAS  Google Scholar 

  57. Costantini M, Igersheim F, Krumenacker L. Process for the preparation of 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadienone. US Patent, 4612401, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenjiang Liu or Ning Jiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YF., Wu, K., Liu, Z. et al. CsOH catalyzed aerobic oxidative synthesis of p-quinols from multi-alkyl phenols under mild conditions. Sci. China Chem. 58, 1334–1339 (2015). https://doi.org/10.1007/s11426-015-5363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5363-4

Keywords

Navigation