Skip to main content
Log in

DFT calculation analysis of oxygen reduction activity and stability of bimetallic catalysts with Pt-segregated surface

  • Articles
  • Special Issue Heterogeneous Catalysis Theory
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The stability and oxygen reduction reaction (ORR) activity of the Pt-segregated surface in various Pt-M alloys (M: transition metals) are investigated through systematic DFT calculations on the thermodynamic (alloy formation energy and Pt surface segregation energy), surface chemical property (oxygen binding energy) and electronic (d-band center) properties. Factors affecting these properties, such as the atomic radii and surface energy of M and the electronic ligand interaction between Pt and M are analyzed as a function of outmost d electron numbers of M. It is shown that the electronic ligand interaction plays determining role in the alloy formation energy of various Pt-M alloys; the formation of Pt-segregated surface in Pt-M alloys is favored when alloying metals have higher surface energy and smaller radii than Pt; the oxygen binding energy on the Pt-segregated surface in Pt-M alloys varies approximately linearly with the d-band center of surface Pt atoms; the lattice strain and electronic ligand effects are simply additive in Pt-M alloys; the stain effect in Pt-M alloys nearly linearly affects the d-band center of the Pt-segregated surface in Pt-M alloys; transition metals with less than 10 d electrons mostly exhibit electron ligand effects which result in downshift of the d-band center of the segregated surface Pt atoms, while those with ten d electrons exhibit electron ligand effect upshifting the d-band center of the segregated Pt atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobson MZ, Colella WG, Golden DM. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science, 2005, 308: 1901–1905

    Article  CAS  Google Scholar 

  2. Wang C, Markovic NM, Stamenkovic VR. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal, 2012, 2: 891–898

    Article  CAS  Google Scholar 

  3. Gasteiger HA, Markovic NM. Just a dream-or future reality? Science, 2009, 324: 48–49

    Article  CAS  Google Scholar 

  4. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater, 2007, 6: 241–247

    Article  CAS  Google Scholar 

  5. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature Chem, 2010, 2: 454–460

    Article  CAS  Google Scholar 

  6. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem, 2009, 1: 552–556

    Article  CAS  Google Scholar 

  7. Toda T, Igarashi H, Uchida H, Watanabe M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc, 1999, 146: 3750–3756

    Article  CAS  Google Scholar 

  8. Stamenkovic V, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315: 493–497

    Article  CAS  Google Scholar 

  9. Koh S, Strasser P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc, 2007, 129: 12624–12625

    Article  CAS  Google Scholar 

  10. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed, 2006, 45: 2897–2901

    Article  CAS  Google Scholar 

  11. Dai Y, Ou LH, Liang W, Yang F, Liu YW, Chen SL. Efficient and superiorly durable Pt-lean electrocatalysts of Pt-W alloys for the oxygen reduction reaction. J Phys Chem C, 2011, 115: 2162–2168

    Article  CAS  Google Scholar 

  12. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F. Platinum monolayer fuel cell electrocatalysts. Top Catal, 2007, 46: 249–262

    Article  CAS  Google Scholar 

  13. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  14. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892–7895

    Article  Google Scholar 

  15. Methfessel M, Paxton AT. High-precision sampling for brillouinzone integration in metals. Phys Rev B, 1989, 40: 3616–3621

    Article  CAS  Google Scholar 

  16. Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P. PWSCF and PHONON: plane-wave pseudo-potential codes. http://www.pwscf.org, 2001

    Google Scholar 

  17. Kokalj A. XCrySDen-a new program for displaying crystalline structures and electron densities. J Mol Graphics Modell, 1999, 17: 176–179

    Article  CAS  Google Scholar 

  18. Kokalj A, Causa M. Scientific visualization in computational quantum chemistry. In: Proceedings of High Performance Graphics Systems and Applications European Workshop. Bologna: CINECA-Interuniversity Consortium, 2000

    Google Scholar 

  19. Løvvik OM. Surface segregation in palladium based alloys from density-functional calculations. Surf Sci, 2005, 583: 100–106

    Article  Google Scholar 

  20. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH. Universality in heterogeneous catalysis. J Catal, 2002, 209: 275–278

    Article  Google Scholar 

  21. Allinger NL, Zhou XF, Bergsma J. Molecular mechanics parameters. J Mol Struc-Theochem, 1994, 312: 69–83

    Article  Google Scholar 

  22. De Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK. Cohesion in Metals. Amsterdam: North-Holland, 1988

    Google Scholar 

  23. Paudyal D, Mookerjee A. Phase stability and magnetism in NiPt and NiPd alloys. J Phys: Condens Matter, 2004, 16: 5791–5802

    CAS  Google Scholar 

  24. Koper MTM. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem, 2011, 660: 254–260

    Article  CAS  Google Scholar 

  25. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCat-Chem, 2011, 3: 1159–1165

    Article  CAS  Google Scholar 

  26. Hammer B, Nørskov JK. Electronic factors determining the reactivity of metal surfaces. Surf Sci, 1995, 343: 211–220

    Article  CAS  Google Scholar 

  27. Hammer B, Nørskov JK. Why gold is the noblest of all the metals. Nature, 1995, 376: 238–240

    Article  CAS  Google Scholar 

  28. Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett, 2004, 93: 156801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, L., Chen, S. DFT calculation analysis of oxygen reduction activity and stability of bimetallic catalysts with Pt-segregated surface. Sci. China Chem. 58, 586–592 (2015). https://doi.org/10.1007/s11426-015-5324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5324-y

Keywords

Navigation