Skip to main content
Log in

Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Multi-functional mikto-arm star polymers containing three different arms [hydrophilic, SN-38-P(OEGMA8–9)11, cationizable, SN-38-P(DMAEMA)38 and hydrophobic, SN-38-P(BMA)26] were prepared by RAFT polymerization via an arm-first approach using a cleavable cross-linker. The star polymers were cleaved to the linear arms with tributylphosphine as a reducing agent. The decrease in molecular weight observed is consistent with the initial stars having approximately five arms. Blue fluorescence was observed when a solution of mikto-arm star was irradiated under a 365 nm light proving the retention of the SN-38 moiety during star formation by RAFT polymerization. Thus these polymer-drug conjugates can be considered as potential delivery vehicles for cancer therapy. The P(DMAEMA) arms can be quaternized using iodomethane, allowing star polymers to bind negatively charged small interfering RNA (siRNA) and potentially be used as a carrier for that material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer S, Bulmus V. Davis TP, Ladmiral V, Liu J, Perrier S. Bioapplications of RAFT polymerization. Chem Rev, 2009, 109: 5402–5436

    Article  CAS  Google Scholar 

  2. Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem, 2014, 5: 1529–1544

    Article  CAS  Google Scholar 

  3. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev, 2001, 47: 113–131

    Article  CAS  Google Scholar 

  4. Wyman I, Liu G. Self-assembly and chemical processing of block copolymers: a roadmap towards a diverse array of block copolymer nanostructures. Sci China Chem, 2013, 56: 1040–1066

    Article  CAS  Google Scholar 

  5. Jenkins AD, Jones RG, Moad G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization. Pure Appl Chem, 2010, 82: 483–491

    CAS  Google Scholar 

  6. Solomon DH, Rizzardo E, Cacioli P. Polymerization process and polymers produced thereby. US Patent 4581429, 1986-04-08. (Chem Abstr, 1985, 102: 221335)

    Google Scholar 

  7. George MK, Veregin RPN, Kazmaier PM, Hamer GK. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26: 2987–2988

    Article  Google Scholar 

  8. Hawker CJ, Bosman AW, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev, 2001, 101: 3661–3688

    Article  CAS  Google Scholar 

  9. Rizzardo E, Moad G. Alkoxyamine-initiated living radical polymerization: factors affecting alkoxyamine homolysis rates. Macromolecules, 1995, 28: 8722–8728

    Article  Google Scholar 

  10. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloridel/dichlorotris-(triphenylphosphine)ruthedum(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28: 1721–1723

    Article  CAS  Google Scholar 

  11. Percec V, Barboiu B. “Living” radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl. Macromolecules, 1995, 28: 7970–7972

    Article  CAS  Google Scholar 

  12. Wang JS, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995, 117: 5614–5615

    Article  CAS  Google Scholar 

  13. Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev, 2009, 109: 4963–5050

    Article  CAS  Google Scholar 

  14. Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 2012, 45: 4015–4039

    Article  CAS  Google Scholar 

  15. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998, 31: 5559–5562

    Article  CAS  Google Scholar 

  16. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process-a third update. Aust J Chem, 2012, 65: 985–1076

    Article  CAS  Google Scholar 

  17. Moad G, Rizzardo E, Thang SH. RAFT polymerization and some of its applications. Chem Asian J, 2013, 8: 1634–1644

    Article  CAS  Google Scholar 

  18. Chen M, Ghiggino KP, Thang SH, Wilson GJ. Star-shaped light-harvesting polymers incorporting an energy cascade. Angew chem Int Ed, 2005, 44: 4368–4372

    Article  CAS  Google Scholar 

  19. Moad G, Chen M, Häussler M, Postma, A, Rizzardo E, Thang SH. Functional polymers for optoelectronic applications by RAFT polymerization. Polym Chem, 2011, 2: 492–519

    Article  CAS  Google Scholar 

  20. Isakova A, Topham PD, Sutherland AJ. Controlled RAFT polymerization and Zinc binding performance of catechol-inspired homopolymers. Macromolecules, 2014, Doi: 10.1021/ma500336u

    Google Scholar 

  21. Wei Z, Hao X, Kambouris PA, Gan Z, Hughes TC. One-pot synthesis of hyperbranched polymers using small molecule and macro RAFT inimers. Polymer, 2012, 53: 1429–1436

    Article  CAS  Google Scholar 

  22. Yang J, Luo K, Pan H, Kopeckova P, Kopecek J. Synthesis of biodegradable multiblock copolymers by click coupling of RAFT-generated heterotelechelic PolyHPMA conjugates. React Funct Polym, 2011, 71: 294–302

    Article  CAS  Google Scholar 

  23. Blencowe A, Tan JF, Goh TK, Qiao GG. Core cross-linked star polymers via controlled radical polymerisation. Polymer, 2009, 50: 5–32

    Article  CAS  Google Scholar 

  24. Gao H, Matyjaszewski K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci, 2009, 34: 317–350

    Article  CAS  Google Scholar 

  25. Rosselgong J, Williams EG, Le TP, Grusche F, Hinton TM, Tizard M, Gunatillake P, Thang SH. Core degradable star RAFT polymers: synthesis, polymerization, and degradation Studies. Macromolecules, 2013, 46: 9181–9188

    Article  CAS  Google Scholar 

  26. Altintas O, Hizal G, Tunca U. ABC-type hetero-arm star terpolymers through “Click” chemistry. J Polym Sci, Part A: Polym Chem, 2006, 44: 5699–5707

    Article  CAS  Google Scholar 

  27. Gao H, Matyjaszewski K. Synthesis of star polymers by a combination of ATRP and the “Click” coupling method. Macromolecules, 2006, 39: 4960–4965

    Article  CAS  Google Scholar 

  28. Chan JW, Yu B, Hoyle CE, Lowe AB. Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N, N-diethylacrylamide) via a thiol-ene click reaction. Chem Commun, 2008, 4959–4961

    Google Scholar 

  29. Gao H, Matyjaszewski K. Arm-first method as a simple and general method for synthesis of miktoarm star copolymers. J Am Chem Soc, 2007, 129: 11828–11834

    Article  CAS  Google Scholar 

  30. Cheng F, Bonder EM, Doshi A, Jäkle F. Organoboron star polymers via arm-first RAFT polymerization: synthesis, luminescent behavior, and aqueous self-assembly. Polym Chem, 2012, 3: 596–600

    Article  CAS  Google Scholar 

  31. Shi X, Zhou W, Qiu Q, An Z. Amphiphilic heteroarm star polymer synthesized by RAFT dispersion polymerization in water/ethanol solution. Chem Commun, 2012, 48: 7389–7391

    Article  CAS  Google Scholar 

  32. Ferreira J, Syrett J, Whittaker M, Haddleton D, Davis TP, Boyer C. Optimizing the generation of narrow polydispersity ‘arm-first’star polymers made using RAFT polymerization. Polym Chem, 2011, 2:1671–1677

    Article  CAS  Google Scholar 

  33. Wei X, Moad G, Muir BW, Rizzardo E, Rosselgong J, Yang W, Thang SH. An arm-first approach to cleavable mikto-arm star polymers by RAFT polymerization. Macromol Rapid Commun, 2014, 35: 840–845

    Article  CAS  Google Scholar 

  34. Rosselgong J, Armes SP, Barton W, Price D. Synthesis of highly branched methacrylic copolymers: observation of near-ideal behavior using RAFT polymerization. Macromolecules, 2009, 42: 5919–5924

    Article  CAS  Google Scholar 

  35. Peng CL, Lai PS, Lin FH. Yueh-Hsiu Wu S, Shieh MJ. Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles. Biomaterials, 2009, 30: 3614–3625

    Article  CAS  Google Scholar 

  36. Caiolfa VR, Zamai M, Fiorino A, Frigerio E, Pellizzoni C, d’Argy R, Ghiglieri A, Castelli MG, Farao M, Pesenti E, Gigli M, Angelucci F, Suarato A. Polymer-bound camptothecin: initial biodistribution and antitumour activity studies. J Control Rel, 2000, 65: 105–119

    Article  CAS  Google Scholar 

  37. Hamaguchi T, Doi T, Eguchi-Nakajima T, Kato K, Yamada Y, Shimada Y, Fuse N, Ohtsu A, Matsumoto S, Takanashi M, Matsumura Y. Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res, 2010, 16: 5058–5066

    Article  CAS  Google Scholar 

  38. Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev, 2011, 63: 184–192

    Article  CAS  Google Scholar 

  39. Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, Liu S. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc, 2013, 135: 17617–17629

    Article  CAS  Google Scholar 

  40. Hu X, Tian J, Liu T, Zhang G, Liu S. Photo-triggered release of caged camptothecin prodrugs from dually responsive shell cross-linked micelles. Macromolecules, 2013, 46: 6243–6256.

    Article  CAS  Google Scholar 

  41. Williams CC, Thang SH, Hantke T, Vogel U, Seeberger PH, Tsanaktsidis J, Lepenies B. RAFT-derived polymer-drug conjugates: poly(hydroxypropyl methacrylamide) (HPMA)-7-ethyl-10-hydroxycamptothecin (SN-38) conjugates. ChemMedChem, 2012, 7: 281–291

    Article  CAS  Google Scholar 

  42. Moad G, Chong YK, Rizzardo E, Postma A, Thang SH. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005, 46: 8458–8468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WanTai Yang or San H. Thang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Gunatillake, P.A., Moad, G. et al. Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety. Sci. China Chem. 57, 995–1001 (2014). https://doi.org/10.1007/s11426-014-5128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5128-5

Keywords

Navigation