Skip to main content
Log in

Biomedical applications of shape-memory polymers: how practically useful are they?

  • Reviews
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Shape-memory effect (SME) is the ability of a material to change its dimension in a predefined way in response to an external stimulus. Polymers that exhibit SME are an important class of materials in medicine, especially for minimally invasive deployment of devices. However, the rate of translation of the concept to approved products is extremely low, with mostly nitinolbased devices being approved. In this review, the general aspects of the different types of stimuli that can be used to activate SME are reviewed and sterilization issues of shape-memory polymer (SMP)-based medical devices are addressed. In addition, the general usefulness as well as the limitations of the shape-memory effect for biomedical applications are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002, 296: 1673–1676

    Google Scholar 

  2. Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices, 2010, 7: 357–379

    CAS  Google Scholar 

  3. Small W, Singhal P, Wilson TS, Maitland DJ. Biomedical applications of thermally activated shape memory polymers. J Mater Chem, 2010, 20: 3356–3366

    CAS  Google Scholar 

  4. Xie T. Recent advances in polymer shape memory. Polymer, 2011, 52: 4985–5000

    CAS  Google Scholar 

  5. Hu J, Zhu Y, Huang H, Lu J. Recent advances in shape-memory polymers: strucutres, mechanism, functionality, modeling and applications. Prog Polym Sci, 2012, 37: 1720–1763

    CAS  Google Scholar 

  6. Hu J, Chen S. A review of actively moving polymers in textile applications. J Mater Chem, 2010, 20: 3346–3355

    CAS  Google Scholar 

  7. Rousseau IA, Mather PT. Shape memory effect exhibited by smectic liquid crystalline elastomers. J Am Chem Soc, 2003, 125: 15300–15310

    CAS  Google Scholar 

  8. Ahir SV, Tajbakhsh AR, Terentjev EM. Self-assembled shapememory fibers of triblck liquid-crystal polymers. Adv Funct Mater, 2006, 16: 556–560

    CAS  Google Scholar 

  9. Behl M, Lendlein A. Triple-shape polymers. J Mater Chem, 2010, 20: 3335–3345

    CAS  Google Scholar 

  10. Sharp AA, Panchawagh HV, Ortega A, Artale R, Richardson-Burn S, Finch DS, Gall K, Mahajan RL, Restrepo D. Toward a selfdeploying shape memory polymer neuronal electrode. J Neural Eng, 2006, 3: L23–L30

    Google Scholar 

  11. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B. Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers. Mat Sci Eng A, 2007, 471: 57–62

    Google Scholar 

  12. Buckley PR, McKinley GH, Wilson TS, Small W, Benett WJ, Bearinger JP, McElfresh MW, Maitland DJ. Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng, 2006, 53: 2075

    Google Scholar 

  13. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA, 2006, 103: 3540–3545

    CAS  Google Scholar 

  14. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B. Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mat Sci Eng A, 2007, 444: 227–235

    Google Scholar 

  15. Cuevas JM, Alonso J, German L, Iturrondobeitia M, Laza JM, Vilas JL, Leon LM. Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer. Smart Mater Struct, 2009, 18: 075003–075013

    Google Scholar 

  16. Yu X, Zhou S, Zheng X, Guo T, Xiao Y, Song B. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology, 2009, 20: 235702–235711

    Google Scholar 

  17. Lendlein A, Schmidt AM, Langer R. AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA, 2001, 98: 842–847

    CAS  Google Scholar 

  18. Meng Q, Hu J, Zhu Y. Shape-memory polyurethane/multiwalled carbon nanotube fibers. J Appl Polym Sci, 2007, 106: 837–848

    CAS  Google Scholar 

  19. Lee HF, Yu HH. Study of electroactive shape memory polyurethane-carbon nanotube hybrids. Soft Matter, 2011, 7: 3801–3807

    CAS  Google Scholar 

  20. Jimenez GA, Jana SC. Composites of canbon nanofibers and thermoplastic polyurethanes with shape-memory properties prepared by chaotic mixing. Polym Eng Sci, 2009, 49: 2020–2030

    CAS  Google Scholar 

  21. Sahoo NG, Jung YC, Goo NS, Cho JW. Conducting shape memory polyurethane-polypyrrole composites for an electroactive actuator. Macromol Mater Eng, 2005, 290: 1049–1055

    CAS  Google Scholar 

  22. Leng J, Wu X, Liu Y. Infrared light-activated shape memory polymer filled with nanocarbon particles. J Appl Polym Sci, 2009, 114: 2455–2460

    CAS  Google Scholar 

  23. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y. Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C, 2009, 113: 9921–9927

    CAS  Google Scholar 

  24. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotubfilled thermoplastic elastomers. Nat Mater, 2004, 3: 115–120

    CAS  Google Scholar 

  25. Cho JW, Kim JW, Jung YC, Goo NS. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Comm, 2005, 26: 412–416

    CAS  Google Scholar 

  26. Jung YC, Yoo HJ, Kim YA, Cho JW, Endo M. Electroactive shape memory performance of polyurethane compsoite having homogeneously dispersed and convalently crosslinked carbon nanotubes. Carbon, 2012, 48: 1598–1603

    Google Scholar 

  27. Maitland DJ, Small W, Ortega JM, Buckley PR, Rodriguez J, Hartman J, Wilson TS. Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. J Biomed Opt, 2007, 12: 030504

    Google Scholar 

  28. Jung YC, So HH, Cho JW. Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J Macromol Sci B, 2006, 45: 453–461

    CAS  Google Scholar 

  29. Yang B, Huang WM, Li C, Li L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory Polymer, 2006, 47: 1348–1356

    CAS  Google Scholar 

  30. Chen MC, Tsai HW, Chang Y, Lai WY, Mi FL, Liu CT, Wong HS, Sung HW. Rapidly self-expandable polymeric stents with a shapememory property. Biomacromolecules, 2007, 8: 2774–2780

    CAS  Google Scholar 

  31. Jiang HY, Kelch S, Lendlein A. Polymers move in response to light. Adv Mater, 2006, 18: 1471–1475

    CAS  Google Scholar 

  32. Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ. Lightactivated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter, 2011, 7: 4318–4324

    CAS  Google Scholar 

  33. Lendlein A, Jiang H, Junger O, Langer R. Light-induced shapememory polymers. Nature, 2005, 434: 879–882

    CAS  Google Scholar 

  34. Wu L, Jin C, Sun X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules, 2010, 12: 235–241

    Google Scholar 

  35. Zhu Y, Hu J, Luo H, Young RJ, Deng L, Zhang S, Fan Y, Ye G. Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter, 2012, 8: 2509

    CAS  Google Scholar 

  36. Lendlein A, Schmidt AM, Schroeter M, Langer R. Shape-memory polymer networks from oligo(ɛ-caprolactone)dimethacrylates. J Polym Sci Pol Chem, 2005, 43: 1369–1381

    CAS  Google Scholar 

  37. Bertmer M, Buda A, Blomenkamp-Höfges I, Kelch S, Lendlein A. Biodegradable shape-memory polymer networks: characterization with solid-state NMR. Macromolecules, 2005, 38: 3793–3799

    CAS  Google Scholar 

  38. Choi N-y, Lendlein A. Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter, 2007, 3: 901–909

    CAS  Google Scholar 

  39. Padermi K, Pandini S, Passera S, Pilati F, Toselli M, Messori M. Shape-memory polymer networks from sol-gel cross-linked alkoxysilane-terminated poly(ɛ-caprolactone). J Mater Sci, 2012, 47: 4354–4362

    Google Scholar 

  40. Alteheld A, Feng YK, Kelch S, Lendlein A. Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew Chem Int Ed, 2005, 44: 1188–1192

    CAS  Google Scholar 

  41. Migneco F, Huang YC, Birla RK, Hollister SJ. Poly (glyceroldodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials, 2009, 30: 6479–6484

    CAS  Google Scholar 

  42. Lendlein A, Neuenschwander P, Suter UW. Hydroxy-telechelic copolyesters with well defined sequence structure through ringopening polymerization. Macromol Chem Phys, 2000, 201: 1067–1076

    CAS  Google Scholar 

  43. Qi HJ, Boyce MC. Stress-strain behavior of thermoplastic polyurethanes. Mech Mater, 2005, 37: 817–839

    Google Scholar 

  44. Meckel W, Goyert W, Wieder W. Thermoplastic polyurethane elastomers. In: Holden G, Kricheldorf HR, Quirk RP, Eds. Thermoplastic Elastomers. 3rd ed. Munich: Carl Hanser Verlag, 2004

    Google Scholar 

  45. Chun BC, Cho TK, Chung YC. Enhanced mechanical and shape memory properties of polyurethane block copolymers chainextended by ethylene diamine. Eur Polym J, 2006, 42: 3367–3373

    CAS  Google Scholar 

  46. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules, 2001, 34: 6431–6437

    CAS  Google Scholar 

  47. Yang JH, Chun BC, Chung YC, Cho JH. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 2003, 44: 3251–3258

    CAS  Google Scholar 

  48. Lin JR, Chen LW. Study on shape-memory behavior of polyetherbased polyurethanes. I. Influence of the hard-segment content. J Appl Polym Sci, 1998, 69: 1563–1574

    CAS  Google Scholar 

  49. Chun BC, Cho TK, Chung YC. Blocking of soft segments with different chain lengths and its impact on the shape memory property of polyurethane copolymer. J Appl Polym Sci, 2007, 103: 1435–1441

    CAS  Google Scholar 

  50. Wang W, Ping P, Chen X, Jing X. Biodegradable polyurethane based on random copolymer of L-lactide and ɛ-caprolactone and its shape-memory property. J Appl Polym Sci, 2007, 104: 4182–4187

    CAS  Google Scholar 

  51. Wang W, Ping P, Chen X, Jing X. Shape memory effect of poly(l-lactide)-based polyurethanes with different hard segments. Polym Int, 2007, 56: 840–846

    CAS  Google Scholar 

  52. Wang WS, Ping P, Chen XS, Jing XB. Polylactide-based polyurethane and its shape-memory behavior. Eur Polym J, 2006, 42: 1240–1249

    CAS  Google Scholar 

  53. Wang Y, Li Y, Luo Y, Huang M, Liang Z. Synthesis and characterization of a novel biodegradable thermoplastic shape memory polymer. Mater Lett, 2009, 63: 347–349

    CAS  Google Scholar 

  54. Ruan C, Wang Y, Zhang M, Luo Y, Fu C, Huang M, Sun J, Hu C. Design, synthesis and characterization of novel biodegradable shape memory polymers based on poly(d,l-lactic acid) diol, hexamethylene diisocyanate and piperazine. Polym Int, 2012, 61: 524–530

    CAS  Google Scholar 

  55. Min CC, Cui WJ, Bei JZ, Wang SG. Biodegradable shape-memory polymer-polylactideco-poly(glycolide-co-caprolactone) multiblock copolymer. Polym Adv Technol, 2005, 16: 608–615

    CAS  Google Scholar 

  56. Xue L, Dai S, Li Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials, 2010, 31: 8132–8140

    CAS  Google Scholar 

  57. Ratna D, Karger-Kocsis J. Recent advances in shape memory polymers and composites: a review. J Mater Sci, 2008, 43: 254–269

    CAS  Google Scholar 

  58. Kim BK, Lee SY, Xu M. Polyurethanes having shape memory effects. Polymer, 1996, 37: 5781–5793

    CAS  Google Scholar 

  59. Li F, Zhang X, Hou J, Xu M, Luo X, Ma D, Kim BK. Studies on thermally stimulated shape memory effect of segmented polyurethanes. J Appl Polym Sci, 1997, 64: 1511–1516

    CAS  Google Scholar 

  60. Ping P, Wang WS, Chen XS, Jing XB. Poly(ɛ-caprolactone) polyurethane and its shape-memory property. Biomacromolecules, 2005, 6: 587–592

    Google Scholar 

  61. Luo X, Zhang X, Wang M, Ma D, Xu M, Li F. Thermally stimulated shape-memory behavior of ethylene oxide-ethylene terephthalate segmented copolymer. J Appl Polym Sci, 1997, 64: 2433–2440

    CAS  Google Scholar 

  62. FDA. Updated 510(k) sterility review guidance K90-1; Guidence for industry and FDA. In: US Department of Health and Human Services FaDA, Center for Devices and Radiological Health, Office of Device Evalution, editor. Rockville, MD, USA 2002

    Google Scholar 

  63. Yakacki CM, Lyons MB, Rech B, Gall K, Shandas R. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization. Biomed Mater, 2008, 3: 015010 (1–9)

    Google Scholar 

  64. Marreco PR, Moreira PdL, Genari SC, Moraes AM. Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membrances used as wound dressings. J Biomed Mater Res B, 2004, 71B: 268–277

    CAS  Google Scholar 

  65. Dånmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, Albertsson AC. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater, 2011, 7: 2035–2046

    Google Scholar 

  66. Friess W, Schlapp M. Sterilization of gentamicin containing collagen/PLGA microparticle composites. Eur J Pharm Biopharm, 2006, 63: 176–187

    CAS  Google Scholar 

  67. Filipczak K, Wozniak M, Ulanski P, Olah L, Przybytniak G, Olkowski RM, Lewandowska-Szumiel M, Rosiak JM. Poly(ɛ-caprolactone) biomaterial sterilized by e-beam irradiation. Macromol Biosci, 2006, 6: 261–273

    CAS  Google Scholar 

  68. Bosworth LA, Downes GS. Gamma irradiation of electrospun poly(ɛ-caprolactone) fibers affects material properties but not cell response. J Polym Sci Polr Phys, 2012, 50: 870–876

    CAS  Google Scholar 

  69. Kanjickal D, Lopina S, Evancho-Chapman MM, Schmidt S, Donovan D. Effect of sterilization on poly(ethylene glycol) hydrogels. J Biomed Mater Res Part A, 2008, 87A: 608–617

    CAS  Google Scholar 

  70. De Nardo L, Alberti R, Cigada A, Yahia LH, Tanzi MC, Farè S. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility. Acta Biomater, 2009, 5: 1508–1518

    Google Scholar 

  71. Ikarashi Y, Tsuchiya T, Nakamura A. Cytotoxicity of medical materials sterilized with vapour-phase hydrogen peroxide. Biomaterials, 1995, 16: 177–183

    CAS  Google Scholar 

  72. Rickert D, Lendlein A, Schmidt AM, Kelch S, Roehlke W, Fuhrmann R, Franke RP. In vitro cytotoxicity testing of AB-polymer networks based on oligo(ɛ-caprolactone) segments after different sterilization techniques. J Biomed Mater Res B, 2003, 67B: 722–731

    CAS  Google Scholar 

  73. Peniston SJ, Choi SJ. Effect of sterilization on the physicochemical properties of molded poly(l-lactic acid). J Biomed Mater Res B, 2007, 80B: 67–77

    CAS  Google Scholar 

  74. McManus AJ, Moser RC, Dabkowski RB, Thomas KA. Enhanced retention of polymer physical characteristics and mechanical strength of 70:30 poly(l-lactide-co-d,l-lactide) after ethylene oxide sterilization. J Biomed Mater Res B, 2007, 82B: 325–333

    CAS  Google Scholar 

  75. Karajanagi SS, Yoganathan R, Mammucari R, Park H, Cosx J, Zeitels SM, Langer R, Foster NR. Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol Bioeng, 2011, 108: 1716–1725

    CAS  Google Scholar 

  76. Machado LG, Savi MA. Medical applications of shape memory alloys. Braz J Med Biol Res, 2003, 36: 683–691

    CAS  Google Scholar 

  77. Uo M, Watari F, Yokoyama A, Matsuno H, Kawasaki T. Tissue reaction around metal implants observed by X-ray scanning analytical microscopy. Biomaterials, 2001, 22: 677–685

    CAS  Google Scholar 

  78. Shih CC, Lin SJ, Chen YL, Su YY, Lai ST, Wu GJ, Kwok CF, Chung KH. The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. J Biomed Mater Res, 2000, 52: 395–403

    CAS  Google Scholar 

  79. Mohammed E, Martha E, Helge F. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem, 2005, 381: 557–567

    Google Scholar 

  80. Masafumi M, Tokiko H, Kiyoshi Y, Yuji S, Takayuki H, Yuji K. Evaluation of biocompatibility for titanium-nickel shape memory alloy in vivo and in vitro environments. Mater Trans, 2007, 48: 352–360

    Google Scholar 

  81. Xu S-G, Zhang P, Zhu GM, Jiang YM. Effect of biodegradable shape-memory polymers on proliferation of 3T3 cells. J Mater Eng Perform, 2011, 20: 807–811

    CAS  Google Scholar 

  82. Rickert D, Lendlein A, Schmidt AM, Roehlke SKW, Fuhrmann R, Franke RP. In vitro cytotoxicity testing of AB-polymer networks based on oligo(ɛ-caprolactone) segments after different sterilization techniques. J Biomed Mater Res B, 2003, 67B: 722–731

    CAS  Google Scholar 

  83. Yakacki CM, Lyons MB, Rech B, Gall K, Shandas R. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization. Biomed Mater, 2008, 3: 015010

    CAS  Google Scholar 

  84. Singhal P, Rodriguez J, Small W, Eagleston S, Water JV, Maitland DJ, Wilson TS. Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. J Polym Sci Pol Phys, 2012, 50: 724–737

    CAS  Google Scholar 

  85. Bettuchi M, Heinrich R. Novel surgical fastener. US Patent 2009/0118747 A1, 2009.

    Google Scholar 

  86. Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, Lu HB, Tang C, Ding Z, Zhang JL. Shaping tissue with shape memory materials. Adv Drug Deliver Rev, 2013, 65: 515–535

    CAS  Google Scholar 

  87. Ajili SH, Ebrahimi NG, Soleimani M. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater, 2009, 5: 1519–1530

    CAS  Google Scholar 

  88. Wache HM, Tartakowska DJ, Hentrich A, Wagner MH. Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci-Mater M, 2003, 14: 109–112

    CAS  Google Scholar 

  89. Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. Proc Natl Acad Sci USA, 2006, 103: 18043–18047

    CAS  Google Scholar 

  90. Baer GM, Small W, Wilson TS, Benett WJ, Matthews DL, Hartman J, Maitland DJ. Fabrication and in vitro deployment of a laseractivated shape memory polymer vascular stent. Biomed Eng Online, 2007, 6: 1–8

    Google Scholar 

  91. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials, 2007, 28: 2255–2263

    CAS  Google Scholar 

  92. Baer GM, Wilson TS, Small W, Hartman J, Benett WJ, Matthews DL, Maitland DJ. Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. J Biomed Mater Res B, 2009, 90B: 421–429

    CAS  Google Scholar 

  93. Venkatraman SS, Tan LP, Joso JFD, Boey YCF, Wang XT. Biodegradable stents with elastic memory. Biomaterials, 2006, 27: 1573–1578

    CAS  Google Scholar 

  94. Venkatraman S, Boey F. Polymeric stent and method of manufacture. US Patent, 2004.

    Google Scholar 

  95. Venkatraman S, Poh TL, Vinalia T, Mak KH, Boey F. Collapse pressures of biodegradable stents. Biomaterials, 2003, 24: 2105–2111

    CAS  Google Scholar 

  96. Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ. Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevices, 2002, 4: 89–96

    Google Scholar 

  97. Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS. Photothermal properties of shape memory polymer micro-actuators for treating stroke. Laser Surg Med, 2002, 30: 1–11

    Google Scholar 

  98. Small W, Wilson TS, Benett WJ, Loge JM. Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express, 2005, 13: 8204

    Google Scholar 

  99. Hartman J, Small W, Wilson TS, Brock J, Buckley PR, Benett WJ, Loge JM, Maitland DJ. Embolectomy in a rabbit acute arterial occlusion model using a novel electromechanical extraction device. Am J Neuroradiol, 2007, 28: 872–874

    CAS  Google Scholar 

  100. Hampikian JM, Heaton BC, Tong FC, Zhang Z, Wong CP. Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Mat Sci Enf C, 2006, 26: 1373–1379

    CAS  Google Scholar 

  101. Lee JA, Calabria MF, Bertelson AJ, Boock R. Aneurysm embolization material and device. US Patent 2007/0104752 A1, 2007

    Google Scholar 

  102. Wilson TS, Maitland DJ, Small W, Buckley PR, Benett WJ, Hartman J, Saloner DA. Stent with expandable foam. US Patent 2007/0135907 A1, 2007

    Google Scholar 

  103. Metcalfe A, Desfaits A, Salazkin I, Yahia L, Sokolowski WM, Raymond J. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials, 2003, 24: 491–497

    CAS  Google Scholar 

  104. Ortega J, Maitland DJ, Wilson TS, Tsai W, Savas O, Saloner D. Vascular dynamics of a shape memory polymer foam aneurysm treatment technique. Ann Biomed Eng, 2007, 35: 1870–1884

    Google Scholar 

  105. Wilson TS, Maitland DJ. Shape memory polymer foams for endovascular therapies. US Patent 8,133,256 B2, 2012

    Google Scholar 

  106. Rodriguez JN, Clubb FJ, Wilson TS, Miller MW, Fossum TW, Hartman J, Tuzun E, Singhal P, Maitland DJ. In vivo tissue response to implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res A, 2013, doi: 10.1002/jbm.a.34782

    Google Scholar 

  107. Jung YC, Cho JW. Application of shape memory polyurethane in orthodontic. J Mater Sci Mater M, 2010, 21: 2881–2886

    CAS  Google Scholar 

  108. Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K. Strong, tailored, biocompatible shape-memory polymer. Adv Funct Mater, 2008, 18: 2428–2435

    CAS  Google Scholar 

  109. Rousseau IA, Berger EJ, Owens JN, Kia HG. Shape memory polymer medical cast. US Patent 20100249682, 2012

    Google Scholar 

  110. Shadduck JH. Implants for treating ocular hypertension, methods of use and methods of fabrication. US Patent 20040193262, 2004

    Google Scholar 

  111. Lantada AD, Lafont P, Rada I, Jimenez A, Hernandez JL. Active annuloplasty system for mitral valve insufficiency In: Fred A, Filipe J, Gamboa H, Eds. Biomedical Engineering Systems and Technologies. Springer, 2009. 59–72

    Google Scholar 

  112. Neffe A, Hanh BD, Steuer S, Lendlein A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater, 2009, 21: 3394–3398

    CAS  Google Scholar 

  113. Teague J. Light responsive medical retrieval devices. US Patent 20070299456, 2007

    Google Scholar 

  114. Shandas R, Yakacki CM, Nair DP, Gall K, Lyons M. shape memory polymer-based transcervical devices for permanent or temporary sterilization. US Patent 12/520399, 2010

    Google Scholar 

  115. Feldman T, Wang W. Lumen occluders made from thermodynamic materials. US Patent 6550480 B2, 2003.

    Google Scholar 

  116. Jung YC, Cho JW. Application of shape memory polyurethane in orthodontic. J Mater Sci Mater M, 2010, 21: 2881–2886

    CAS  Google Scholar 

  117. Yakacki CM, Shandas R, Safranski D, Ortega A, Sassaman K, Gall K. Strong, tailored, biocompatible shape-memory polymer. Adv Funct Mater, 2008, 18: 2428–2435

    CAS  Google Scholar 

  118. Rousseau IA, Berger EJ, Owens JN, Kia HG. Shape memory polymer medical cast. US 2010/0249682 A1, 2010

    Google Scholar 

  119. Shadduck JH. Implants for treating ocular hypertension, methods of use and methods of fabrication. US 2004/0193262 A1, 2004

    Google Scholar 

  120. Andres DL, Pilar L, Ignacio R, Antonio J, Jose LH, Hector L, Julio M. Active Annuloplasty System for Mitral Valve Insufficiency. Biomedical Engineering Systems and Technologies. Springer Berlin Heidelberg, 2009. 59–72

    Google Scholar 

  121. Neffe AT, Hanh BD, Steuer S, Lendlein A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater, 2009, 21: 3394–3398

    CAS  Google Scholar 

  122. Teague JA. Light responsive medical retrieval devices. WO 2007/145800, 2007

    Google Scholar 

  123. Shandas R, Yakacki CM, Nair DP, Gall K, Lyons M. Shape memory polymer-based transcervial devices for permanent or temporary sterilization. WO 2008/077123 A1, 2008

    Google Scholar 

  124. Feldmann T, Wang W. Lumen occluders made from thermodynamic materials. US 2002/0129819 A1, 2002

    Google Scholar 

  125. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today, 2002, 7: 569–579

    CAS  Google Scholar 

  126. Lowman AM, Peppas NA. Hydrogels. In: Mathiowitz E, editor. Encyclopedia of Controlled Durg Delivery. New York: John Wiley & Sons, 1999. 397–418

    Google Scholar 

  127. Nagahama K, Ueda Y, Ouchi T, Ohya Y. Biodegradable shapememory polymers exhibiting sharp thermal transitions and controlled Drug Release. Biomacromolecules, 2009, 10: 1789–1794

    CAS  Google Scholar 

  128. Neffe AT, Hanh BD, Steuer S, Lendlein A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater, 2009, 21: 3394–3398

    CAS  Google Scholar 

  129. Xu JW, Song J. High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci USA, 2010, 107: 7652–7657

    CAS  Google Scholar 

  130. Filion TM, Xu J, Prasad ML, Song J. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites. Biomaterials, 2011, 32: 985–991

    CAS  Google Scholar 

  131. Neuss S, Blomenkamp I, Stainforth R, Boltersdorf D, Jansen M, Butz N, Perez-Bouza A, Knüchel R. The use of a shape-memory poly(ɛ-caprolactone)dimethacrylate network as a tissue engineering scaffold. Biomaterials, 2009, 30: 1697–1705

    CAS  Google Scholar 

  132. Cui J, Kratz K, Heuchel M, Hiebl B, Lendlein A. Mechanically active scaffolds from radio-opaque shape-memory polymer-based composites. Polym Adv Technol, 2011, 22: 180–189

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbu S. Venkatraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, Y., Kong, J., Widjaja, L.K. et al. Biomedical applications of shape-memory polymers: how practically useful are they?. Sci. China Chem. 57, 476–489 (2014). https://doi.org/10.1007/s11426-013-5061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5061-z

Keywords

Navigation