Skip to main content
Log in

One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: In situ growth monitoring and photocatalytic activity studies

  • Articles
  • Special Topic Nano and Functional Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hierarchical Ag/Bi2WO6 nanomaterials were prepared by a facile one-step hydrothermal method in mixed acetic acid and ethylene glycol (EG) medium. EG is employed as mild reducing agent for the formation of metallic Ag from Ag+ precursors. In situ energy dispersive X-ray diffraction (EDXRD) monitoring showed that the hydrothermal formation kinetics of Bi2WO6 in the presence of EG was significantly slowed down due to its very high viscosity. The photocatalytic activities of Ag/Bi2WO6 composites were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation. The photocatalytic activity of Bi2WO6 is strongly influenced by the Ag loading. The enhanced catalytic activity of the composites is based on the cooperative effects of plasmon absorption band and separation of photogenerated electron-hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ Sci, 2009, 2: 1231–1257

    Article  Google Scholar 

  2. Kudo A, Miseki Y. Phosphines as building blocks in coordination-based self-assembly. Chem Soc Rev, 2009, 38: 1744–1758

    Article  Google Scholar 

  3. Liu G, Yu JC, Lu GQ, Cheng HM. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun, 2011, 47: 6763–6783

    Article  CAS  Google Scholar 

  4. Ohtani B. Photocatalysis A to Z — What we know and what we do not know in a scientific sense. J Photochem Photobiol C, 2010, 11: 157–178

    Article  CAS  Google Scholar 

  5. Yi ZG, Ye JH, Kikugawa, N, Kako T, Ouyang SX, Stuart-Williams H, Yang H, Cao JY, Luo WJ, Li ZS, Liu Y, Withers RL. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater, 2010, 9: 559–564

    Article  CAS  Google Scholar 

  6. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80

    Article  CAS  Google Scholar 

  7. Chen XB, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750

    Article  CAS  Google Scholar 

  8. Li XZ, Zhao W, Zhao JC. Visible light-sensitized semiconductor photocatalytic. Sci China Chem, 2002, 45: 421–425

    Article  CAS  Google Scholar 

  9. Kudo K, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6 s (2) configuration and d (0) transition metal ions. Chem Lett, 1999, 10: 1103–1104

    Article  Google Scholar 

  10. Zhou Y, Tian ZP, Zhao ZY, Liu Q, Kou JH, Chen XY, Gao J, Yan SC, Zou ZG. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS App Mater Inter, 2011, 3: 3594–3601

    Article  CAS  Google Scholar 

  11. Tang JW, Zou ZG, Ye JH. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal Lett, 2004, 92: 53–56

    Article  CAS  Google Scholar 

  12. Shi R, Huang GL, Lin J, Zhu YF. Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J Phys Chem C, 2009, 113: 19633–19638

    Article  CAS  Google Scholar 

  13. Yu HG, Irie H, Hashimoto K. Conduction band energy level control of titanium dioxide towards an efficient visible light-sensitive photocatalyst. J Am Chem Soc, 2010, 132: 6898–8999

    Article  CAS  Google Scholar 

  14. Qiu XQ, Miyauchi M, Yu HG, Irie H, Hashimoto K. Visi ble-light-driven Cu(II)-(Sr(1−y)Na(y))(Ti(1−x)Mo(x))O3 photocatalysts based on conduction band control and surface ion modification. J Am Chem Soc, 2010, 132: 15259–15267

    Article  CAS  Google Scholar 

  15. Zhang LW, Man YM, Zhu YF. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal, 2011, 1: 841–848

    Article  CAS  Google Scholar 

  16. He DQ, Wang LL, Xu DD, Zhai JL, Wang DJ, Xie TF. Investigation of photocatalytic activities over Bi2WO6/ZnWO4 composite under UV light and its photoinduced charge transfer properties. ACS Appl Mater Inter, 2011, 3: 3167–3171

    Article  CAS  Google Scholar 

  17. Zhou Y, Krumeich F, Heel A, Patzke GR. One-step hydrothermal coating approach to photocatalytically active oxide composites. Dalton Trans, 2010, 39: 6043–6048

    Article  CAS  Google Scholar 

  18. Ge M, Li YF, Liu L, Zhou Z, Chen W. Bi2O3-Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances. J Phys Chem C, 2011, 115: 5220–5223

    Article  CAS  Google Scholar 

  19. Zhang ZJ, Wang WZ, Wang L, Sun SM. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. ACS Appl Mate Inter, 2012, 4: 593–597

    Article  CAS  Google Scholar 

  20. Wang YJ, Bai, XJ, Pan CS, He J, Zhu YF. Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J Mater Chem, 2012, 22: 11568–11573

    Article  CAS  Google Scholar 

  21. Wang WC, Yang, WJ, Chen R, Duan XB, Tian YL, Zeng DW, Shan B. Investigation of band offsets of interface BiOCl:Bi2WO6: a first-principles study. Phys Chem Chem Phys, 2012, 14: 2450–2454

    Article  CAS  Google Scholar 

  22. Zhang LS, Wang WZ, Zhou L, Xu HL. Bi2WO6 Nano- and microstructures: Shape control and associated visible-light-driven photocatalytic activities. Small, 2007, 3: 1618–1625

    Article  CAS  Google Scholar 

  23. Dong F, Zheng A, Sun YJ, Fu M, Jiang BQ, Ho WK, Lee SC, Wu ZB. One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets. CrystEngComm, 2012, 14: 3534–3544

    Article  CAS  Google Scholar 

  24. Dong F, Sun YJ, Ho WK, Wu ZB. Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Trans, 2012, 41: 8270–8284

    Article  CAS  Google Scholar 

  25. Awazu K, Fujimaki M, Rockstuhl, C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc, 2008, 130: 1676–1680

    Article  CAS  Google Scholar 

  26. Ren J, Wang Z, Sun SM, Zhang L, Chang J. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal B, 2009, 92: 50–55

    Article  CAS  Google Scholar 

  27. Wang DJ, Xue GL, Zhen YZ, Fu F, Li DS. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. J Mater Chem, 2012, 22: 4751–4758

    Article  CAS  Google Scholar 

  28. Zhou Y, Vuille K, Heel A, Patzke GR. Studies on nanostructured Bi2WO6: convenient hydrothermal and TiO2-coating pathways. Z Anorg Allg Chem, 2009, 635: 1848–1855

    Article  CAS  Google Scholar 

  29. Zhou Y, Antonova E, Bensch W, Patzke GR. In situ X-ray diffraction study of the hydrothermal crystallization of hierarchical Bi2WO6 nanostructures. Nanoscale, 2010, 2: 2412–2417

    Article  CAS  Google Scholar 

  30. Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. Solid State Sci, 2005, 7: 868–873

    Article  CAS  Google Scholar 

  31. Feldmann C. Preparation of nanoscale pigment particles. Adv Mater, 2001, 13: 1301–1303

    Article  CAS  Google Scholar 

  32. Zhou Y, Jin SM, Qiu GZ, Yang M. Preparation of ultrafine nickel powder by polyol method and its oxidation product. Mater Sci Eng B, 2005, 122: 222–225

    Article  Google Scholar 

  33. Sarma LS, Chen CH, Kumar SM, Wang GR, Yen SC, Liu DG, Sheu HS, Yu KL, Tang MT, Lee JF, Bock C, Chen KH, Hwang BJ. Formation of Pt-Ru nanoparticles in ethylene glycol solution: An in situ X-ray absorption spectroscopy study. Langmuir, 2007, 23: 5802–5809

    Article  CAS  Google Scholar 

  34. Chen Y, Liew KY, Li JL. Size-controlled synthesis of Ru nanoparticles by ethylene glycol reduction. Mater Lett, 2008, 62: 1018–1921

    Article  CAS  Google Scholar 

  35. Yang T, Xia D, Self-assembly of highly crystalline spherical BiVO4 in aqueous solutions. J Cryst Growth, 2009, 311: 4505–4509

    Article  CAS  Google Scholar 

  36. Galy J, Hernandez-Velasco J, Landa-Canovas AR, Vila E, Castro A. Ab initio structure determination and Rietveld refinement of Bi10Mo3O24 the member n = 3 of the Bi2n+4MonO6(n+1) series. J Solid State Chem, 2009, 182: 1177–1187

    Article  CAS  Google Scholar 

  37. Hu C, Lan YQ, Hu XX, Wang AM. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B, 2006, 110: 4066–4072

    Article  CAS  Google Scholar 

  38. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniwska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57: 603–609

    Article  CAS  Google Scholar 

  39. Yu J, Yu H, Cheng B, Trapalis C. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J Mol Catal A, 2006, 249: 135–142

    Article  CAS  Google Scholar 

  40. Zhou Y, Antonova E, Lin YH, Grunwaldt JD, Bensch W, Patzke GR. In situ X-ray absorption spectroscopy/energy-dispersive X-ray diffraction studies on the hydrothermal formation of Bi2W1-xMoxO6 nanomaterials. Eur J Inorg Chem, 2012, 783–789

    Google Scholar 

  41. Zhou Y, Pienack N, Bensch W, Patzke GR. The interplay of crystallization kinetics and morphology in nanostructured W/Mo oxide formation: an in situ diffraction study. Small, 2009, 5: 1978–1983

    Article  CAS  Google Scholar 

  42. Engelke L, Schaefer M, Schur M, Bensch W. In situ X-ray diffraction studies of the crystallization of layered manganese thioantimonates( III) under hydrothermal conditions. Chem Mater, 2001, 13: 1383–1390

    Article  CAS  Google Scholar 

  43. Michailovski A, Kiebach R, Bensch W, Grunwaldt JD, Baiker A, Komarneni S, Patzke GR. Morphological and kinetic studies on hexagonal tungstates. Chem Mater, 2007, 19: 185–197

    Article  CAS  Google Scholar 

  44. Leng WH, Zhang Z, Zhang JQ, Cao CN. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J Phys Chem B, 2005, 109: 15008–15023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhou or Greta R. Patzke.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zhang, Q., Lin, Y. et al. One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: In situ growth monitoring and photocatalytic activity studies. Sci. China Chem. 56, 435–442 (2013). https://doi.org/10.1007/s11426-013-4846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4846-4

Keywords

Navigation