Skip to main content
Log in

Metal chalcogenide complex-mediated fabrication of Cu2S film as counter electrode in quantum dot sensitized solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cu2S film onto FTO glass substrate was obtained to function as counter electrode for polysulfide redox reactions in CdS/CdSe co-sensitized solar cells by sintering after spraying a metal chalcogenide complex, N4H9Cu7S4 solution. Relative to Pt counter electrode, the Cu2S counter electrode provides greater electrocatalytic activity and lower charge transfer resistance. The prepared Cu2S counter electrode represented nanoflower-like porous film which was composed of Cu2S nanosheets on FTO and had a higher surface area and lower sheet resistance than that of sulfided brass Cu2S counter electrode. An energy conversion efficiency of 3.62% was achieved using the metal chalcogenide complex-mediated fabricated Cu2S counter electrode for CdS/CdSe co-sensitized solar cells under 1 sun, AM 1.5 illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruhle S, Shalom M, Zaban A. Quantum-dot-sensitized solar cells. ChemPhysChem, 2010, 11(11): 2290–2304

    Article  Google Scholar 

  2. Mora-Sero I, Bisquert J. Breakthroughs in the development of semiconductor-sensitized solar cells. J Phys Chem Lett, 2010, 1(20): 3046–3052

    Article  CAS  Google Scholar 

  3. Oregan B, Gratzel M. A low cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  CAS  Google Scholar 

  4. Lin SC, Lee YL, Chang CH, Shen YJ, Yang YM. Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Appl Phys Lett, 2007, 90(14): 143517(1–3)

    Google Scholar 

  5. Lee YL, Huang BM, Chien HT. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem Mater, 2008, 20(22): 6903–6905

    Article  CAS  Google Scholar 

  6. Acharya KP, Hewa-Kasakarage NN, Alabi TR, Nemitz I, Khon E, Ullrich B, Anzenbacher P, Zamkov M. Synthesis of PbS/TiO2 colloidal heterostructures for photovoltaic applications. J Phys Chem C, 2010, 114(29): 12496–12504

    Article  CAS  Google Scholar 

  7. Yu PR, Zhu K, Norman AG, Ferrere S, Frank AJ, Nozik AJ. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B, 2006, 110(50): 25451–25454

    Article  CAS  Google Scholar 

  8. Sarkar SK, Kim JY, Goldstein DN, Neale NR, Zhu K, Elliott CM, Frank AJ, George SM. In2S3 atomic layer deposition and its application as a sensitizer on TiO2 nanotube arrays for solar energy conversion. J Phys Chem C, 2010, 114(17): 8032–8039

    Article  CAS  Google Scholar 

  9. Mićić OI, Jones KM, Cahill A, Nozik AJ. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J Phys Chem B, 1998, 102(49): 9791–9796

    Article  Google Scholar 

  10. Kan S, Mokari T, Rothenberg E, Banin U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat Mater, 2003, 2(3): 155–158

    Article  CAS  Google Scholar 

  11. Kamat PV. Photovoltaics: Capturing hot electrons. Nat Chem, 2010, 2(10): 809–810

    Article  CAS  Google Scholar 

  12. Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334(6062): 1530–1533

    Article  CAS  Google Scholar 

  13. Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J App Phy, 1961, 32(3): 510–519

    Article  CAS  Google Scholar 

  14. Lee HJ, Yum J-H, Leventis HC, Zakeeruddin SM, Haque SA, Chen P, Seok SI, Grätzel M, Nazeeruddin MK. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J Phys Chem C, 2008, 112(30): 11600–11608

    Article  CAS  Google Scholar 

  15. Tachibana Y, Umekita K, Otsuka Y, Kuwabata S. Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J Phys D: Appl Phys, 2008, 41(10): 102002 (1–5)

    Article  Google Scholar 

  16. Ning ZJ, Yuan CZ, Tian HN, Fu Y, Li L, Sun LC, Agren H. Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. J Mater Chem, 2012, 22(13): 6032–6037

    Article  CAS  Google Scholar 

  17. Lee Y-L, Lo Y-S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater, 2009, 19(4): 604–609

    Article  Google Scholar 

  18. Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S, Zaban A. PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J Phys Chem C, 2011, 115(13): 6162–6166

    Article  CAS  Google Scholar 

  19. Yang ZS, Chen CY, Liu CW, Li CL, Chang HT. Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Adv Energy Mater, 2011, 1(2): 259–264

    Article  CAS  Google Scholar 

  20. Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna LJ, Shen Q, Toyoda T, Bisquert J. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20(29): 295204(1–6)

    Article  Google Scholar 

  21. Medina-Gonzalez Y, Xu WZ, Chen B, Farhanghi N, Charpentier PA. CdS and CdTeS quantum dot decorated TiO2 nanowires. Synthesis and photoefficiency. Nanotechnology, 2011, 22(6): 065603–065610

    Article  Google Scholar 

  22. Seol M, Ramasamy E, Lee J, Yong K. Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode. J Phys Chem C, 2011, 115(44): 22018–22024

    Article  CAS  Google Scholar 

  23. Hodes G, Manassen J, Cahen D. Electrocatalytic electrodes for the polysulfide redox system. J Electrochem Soc, 1980, 127(3): 544–549

    Article  CAS  Google Scholar 

  24. Deng MH, Huang SQ, Zhang QX, Li DM, Luo YH, Shen Q, Toyoda T, Meng QB. Screen-printed Cu2S-based counter electrode for quantum-dot-sensitized solar cell. Chem Lett, 2010, 39(11): 1168–1170

    Article  CAS  Google Scholar 

  25. Radich JG, Dwyer R, Kamat PV. Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2−/Sn 2− at the counter electrode. J Phys Chem Lett, 2011, 2(19): 2453–2460

    Article  CAS  Google Scholar 

  26. Mitzi DB, Kosbar LL, Murray CE, Copel M, Afzali A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature, 2004, 428(6980): 299–303

    Article  CAS  Google Scholar 

  27. Yu XC, Zhu J, Zhang YH, Weng J, Hu LH, Dai SY. SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors. Chem Commun, 2012, 48(27): 3324–3326

    Article  CAS  Google Scholar 

  28. Buerger MJ, Wuensch BJ. Distribution of atoms in high chalcocite, Cu2S. Science, 1963, 141(3577): 276–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhu or SongYuan Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Zhu, J., Liu, F. et al. Metal chalcogenide complex-mediated fabrication of Cu2S film as counter electrode in quantum dot sensitized solar cells. Sci. China Chem. 56, 977–981 (2013). https://doi.org/10.1007/s11426-012-4810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4810-8

Keywords

Navigation