Skip to main content
Log in

Crystal formation and growth mechanism of inorganic nanomaterials in sonochemical syntheses

  • Reviews
  • Progress of Projects Supported by NSFC Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A clear understanding of the nucleation, growth, coarsening, and aggregation processes of nanomaterials is necessary to enable the preparation of highly controlled nanostructures. Among wet chemical synthetic methods, ultrasound-assisted preparation has become an important tool in material science. The formation and crystal growth mechanism under ultrasound is special compared with other wet chemical synthetic routes. In this review, we discussed the chemical and physical effect of ultrasound and summarized the ultrasonic effect on crystallization. The sonolysis of water and the cavitation-induced microjet impact and shockwave are the two key factors in the sonochemical formation of inorganic nanomaterials. The ultrasonic-assisted Ostwald ripening and oriented attachment processes have been reviewed for the possible crystal growth mechanisms in the fabrication of inorganic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gleiter H, Marquardt P. Nanocrystalline structures-An approach to new materials. Metallkd Z, 1984, 75: 263–267

    CAS  Google Scholar 

  2. Birringer R, Gleiter H, Klein HP, Marquardt P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Phys Lett A, 1984, 102: 365–369

    Article  Google Scholar 

  3. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem, 1996, 100: 13226–13239

    Article  CAS  Google Scholar 

  4. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater, 2003, 15: 353–389

    Article  CAS  Google Scholar 

  5. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105: 1025–1102

    Article  CAS  Google Scholar 

  6. Huang F, Gilbert B, Zhang H, Banfield JF. Reversible, surface-controlled structure transformation in nanoparticles induced by aggregation-disaggregation. Phys Rev Lett, 2004, 92: 155501

    Article  CAS  Google Scholar 

  7. Huang F, Banfield JF. Size-dependent phase transformation kinetics in nanocrystalline ZnS. J Am Chem Soc, 2005, 127: 4523–4529

    Article  CAS  Google Scholar 

  8. Lin Z, Gilbert B, Liu Q, Ren G, Huang F. A thermodynamically stable nanophase material. J Am Chem Soc, 2006, 128: 6126–6131

    Article  CAS  Google Scholar 

  9. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev, 2004, 104: 3893–3946

    Article  CAS  Google Scholar 

  10. Wang DS, Xie T, Li YD. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res, 2009, 2: 30–46

    Article  CAS  Google Scholar 

  11. Shingu PH. Mechanical alloying. Mat Sci Forum, 1992, 88–90

  12. Ploog K. Microscopical structuring of solids by molecular beam epitaxy-spatially resolved materials synthesis. Angew Chem Int Ed Engl, 1988, 27: 593–621

    Article  Google Scholar 

  13. Moon H K, Chang C I, Lee D K, Choi H C. Effect of nucleases on the cellular internalization of fluorescent labeled DNA-functional-ized single-walled carbon nanotubes. Nano Res, 2008, 1: 351–360

    Article  CAS  Google Scholar 

  14. Puntes VF, Krishnan KM, Alivisatos AP. Colloidal nanocrystal shape and size control: The case of cobalt. Science, 2001, 291: 2115–2117

    Article  CAS  Google Scholar 

  15. hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc, 2001, 123: 12798–12801

    Article  CAS  Google Scholar 

  16. Qu L, Yu W, Peng X. In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett, 2004, 4: 465–469

    Article  CAS  Google Scholar 

  17. Wong EM, Bonevich JE, Searson PC. Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J Phys Chem B, 1998, 102: 7770–7775

    Article  CAS  Google Scholar 

  18. Penn RL, Oskam G, Strathmann TJ, Searson PC, Stone AT, Veblen DR. Epitaxial assembly in aged colloids. J Phys Chem B, 2001, 105: 2177–2182

    Article  CAS  Google Scholar 

  19. Goia DV, Park J, Matijevic E. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. J Colloid Interface Sci, 1999, 213: 36–45

    Article  Google Scholar 

  20. Ocana M, Morales MP, Serna CJ. The growth-mechanism of alpha-Fe2O3 ellipsoidal particles in solution. J Colloid Interf Sci, 1995, 171: 85–91

    Article  CAS  Google Scholar 

  21. Penn RL, Banfield JF. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281: 969–971

    Article  CAS  Google Scholar 

  22. Banfield JF, Welch SA, Zhang HZ, Ebert TT, Penn RL. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289: 751–754

    Article  CAS  Google Scholar 

  23. Alivisatos AP. Naturally aligned nanocrystals. Science, 2000, 289: 736–737

    Article  CAS  Google Scholar 

  24. Sugimoto T. Preparation of monodispersed colloidal particles. Adv Colloid Interf Sci, 1987, 28: 65–108

    Article  CAS  Google Scholar 

  25. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW. Sonochemical synthesis of amorphous iron. Nature, 1991, 353: 414–416

    Article  CAS  Google Scholar 

  26. Hoogland R. Ultrasound Therapy. Enraf Nonius, Delft, Holland, 1986

    Google Scholar 

  27. Hendee WR. Textbook of Diagnostic Imaging. Eds. Putman CE, Ravin CE. Saunders W. B. Co., Philadelphia, 1988. vol. 1. 62–69

  28. Suslick KS. Sonochemistry. Science, 1990, 247: 1439–1445

    Article  CAS  Google Scholar 

  29. Doktycz SJ, Suslick KS. Interparticle collisions driven by ultrasound. Science, 1990, 247: 1067–1069

    Article  CAS  Google Scholar 

  30. Suslick KS. Applications of ultrasound to materials chemistry. MRS Bullet, 1995: 29–34

  31. Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci, 1999, 29: 295–329

    Article  CAS  Google Scholar 

  32. Suslick KS, Flint EB. Sonoluminescence from non-aqueous liquids. Nature, 1987, 330: 553–555

    Article  CAS  Google Scholar 

  33. Lepoint-Mullie F, Pauw D, Lepoint T. Analysis of the “new electrical model’ of sonoluminescence. Ultrason Sonochem, 1996, 3: 73–76

    Article  CAS  Google Scholar 

  34. Suslick KS, Doktycz SJ, Flint EB. On the origin of sonoluminescence and sonochemistry. Ultrasonics, 1990, 28: 280–290

    Article  CAS  Google Scholar 

  35. Hart EJ, Anbar M. The Hydrated Electron. Wiley, New York, 1970

    Google Scholar 

  36. Pilling MJ, Seakins PW. Reaction Kinetics. Oxford University Press, Oxford, 1995. 170–171

    Google Scholar 

  37. Misík V, Riesz P. Effect of Cd2+ on the H atom yield in the sonolysis of water. J Phys Chem, 1997, 101: 1441–1444

    Article  Google Scholar 

  38. Suslick KS, Casadonte DJ. Heterogeneous sonocatalysis with nickel powder. J Am Chem Soc, 1987, 109: 3459–3461

    Article  CAS  Google Scholar 

  39. Suslick KS, Doktycz SJ. The sonochemistry of zinc powder. J Am Chem Soc, 1989, 111: 2342–2344

    Article  CAS  Google Scholar 

  40. Suslick KS, Doktycz SJ. Ultrasonic irradiation of copper powder. Chem Mater, 1989, 1: 6–8

    Article  CAS  Google Scholar 

  41. Prozorov T, Prozorov R, Suslick KS. High velocity inter-particle collisions driven by ultrasound. J Am Chem Soc. 2004, 126: 13890–13891

    Article  CAS  Google Scholar 

  42. Luche JL, Damiano C. Ultrasounds in organic syntheses. 1. Effect on the formation of lithium organometallic reagents. J Am Chem Soc, 1980, 102: 7926–7927

    Article  CAS  Google Scholar 

  43. Luche JL. Organic Sonochemistry. Plenum: New York, 1998

    Google Scholar 

  44. Renaud P. Note de laboratoire sur lapplication des ultra-sons a la preparation de composes organo-metalliques. Bull Soc Chim Fr, 1950, 17: 1044–1045

    Google Scholar 

  45. Chatakoudu K, Green MLH, Thhompdon M, Suslick KS. The enhancement of intercalation reactions by ultrasound. Chem Commun, 1987, 900–901

  46. Suslick KS, Hyeon T, Fang M, Ries TJ, Cichowlas AA. Sonochemical synthesis of nanophase metals, alloys, and carbides. Mater Sci Forum, 1996, 225: 903–912

    Article  Google Scholar 

  47. Dhas NA, Gedanken A. Characterization of sonochemically prepared unsupported and silica-supported nanostructured pentavalent molybdenum oxide. J Phys Chem B 1997, 101: 9495–9503

    Article  CAS  Google Scholar 

  48. Kumar RV, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater, 2000, 12: 2301–2305

    Article  CAS  Google Scholar 

  49. Zhu JJ, Lu ZH, Aruna ST, Aurbach D, Gedanken A. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chem Mater, 2000, 12: 2557–2566

    Article  CAS  Google Scholar 

  50. Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, Chen HY. Sonochemical synthesis of antimony trisulfide nanowhiskers. Phys Chem Chem Phys, 2002, 4: 3794–3799

    Article  CAS  Google Scholar 

  51. Suslick KS, Hammerton DA, Cline RE. The sonochemical hot spot. J Am Chem Soc, 1986, 108: 5641–5642

    Article  CAS  Google Scholar 

  52. Misik V, Miyoshi N, Riesz P. EPR Spin-trapping study of the sonolysis of H2O/D2O mixtures: Probing the temperatures of cavitation regions. J Phys Chem, 1995, 99: 3605–3611

    Article  CAS  Google Scholar 

  53. McNamara WB, Didenko YT, Suslick KS. Sonoluminescence temperatures during multi-bubble cavitation. Nature, 1999, 401: 772–775

    Article  CAS  Google Scholar 

  54. Mullin JW. Crystallization. Third ed., Butterworth-Heinemann Ltd., 1993

  55. Lyczko N, Espitalier F, Louisnard O, Schwartzentruber J. Effect of ultrasound on the induction time and matastable zone width of potassium sulphate. Chem Engin J, 2002, 86: 233–241

    Article  CAS  Google Scholar 

  56. Sirinivasan R, Shirgaonkar I, Pandit A, Effect of sonication on crystal properties. Separa Sci Tech, 1995, 10: 2239–2243

    Article  Google Scholar 

  57. Li H, Li HR, Guo ZC, Liu Y. The application of powder ultrasound to reaction crystallization. Ultrason Sonochem, 2006, 13: 359–363

    Article  CAS  Google Scholar 

  58. Miyasaka E, Takai M, Hidaka H, Kakimoto Y, Hirasawa I. Effect of ultrasonic irradiation on nucleation phenomena in a Na2HPO4·12H2O melt being used as a heat storage material.Ultrason Sonochem, 2006, 13: 308–312

    Article  CAS  Google Scholar 

  59. Virone C, Cramer HJM, Rosmalen GMV, Stoop AH, Bakker TW. Primary nucleation induced by ultrasonic cavitation. J Cryst Growth, 2006, 294: 9–15

    Article  CAS  Google Scholar 

  60. Lyczko N, Espitalier F, Louisnard O, Schwartzentruber J. Effect of ultrasound on the induction time and matastable zone width of potassium sulphate. Chem Engin J, 2002, 86: 233–241

    Article  CAS  Google Scholar 

  61. Kordylla A, Koch S, Tumakaka F, Schembecker G. Towards an optimized crystallization with ultrasound: Effect of solvent properties and ultrasonic process parameters. J Cryst Growth, 2008, 310: 4177–4184

    Article  CAS  Google Scholar 

  62. Ruecroft G, Hipkiss D, Ly T, Maxted N, Cains PW. Sonocrystallization: The use of ultrasound for improved industrial crystallization. Organ Process Res Develop, 2005, 9: 923–932

    Article  CAS  Google Scholar 

  63. Kashchiev D. Nucleation: Basic Theory with Applications. Butterworth-Heinemann, Oxford, 2000

    Google Scholar 

  64. Louisnard O, Gomez F, Grossier R. Segregation of a liquid mixture by a radially oscillating hubble. J Fluid Mechan, 2007, 577: 385–415

    Article  CAS  Google Scholar 

  65. Louisnard O, Espitalier F. In: 19th International Congress on Acoustics. Revista de Acustica, vol. 38, 3–4 [on CDROM, ISBN 84-87985-12-2], Madrid, Spain, 2007. ULT-09-007, 1–6 (Special Issue)

  66. Storey BD, Szeri AJ. Water vapour, sonoluminescence and sonochemistry. Proc Royal Soc, 2000, 456: 1685–1709

    Article  CAS  Google Scholar 

  67. Grossier R, Louisnard O, Vargas Y. Mixture segregation by an inertial cavitation bubble. Ultrason Sonochem, 2007, 14: 431–437

    Article  CAS  Google Scholar 

  68. Weissler A. Formation of hydrogen peroxide by ultrasonic waves: Free radicals. J Am Chem Soc, 1959, 81: 1077–1081

    Article  CAS  Google Scholar 

  69. Weissler A. Ultrasonic hydroxylation in a fluorescence analysis for microgram quantities of benzoic acid. Nature, 1962, 193: 1070–1070

    Article  CAS  Google Scholar 

  70. Anbar M, Pecht I. 1H NOESY NMR on adsorbed molecules. J Phys Chem, 1964, 68: 352–356

    Article  CAS  Google Scholar 

  71. Makino K, Mossoba MM, Riesz P. Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (·OH and ·H) by spin trapping. J Am Chem Soc, 1982, 104: 3537–3539

    Article  CAS  Google Scholar 

  72. Suslick KS, Doktycz SJ. The Effects of Ultrasound on Solids. Advances in Sonochemistry. Ed. Mason TJ. 1990. 1:197–230. Greenwich CT: JAI

    Google Scholar 

  73. Suslick KS, Johnson RE. Sonochemical activation of transition metals sonochemical activation of transition metals. J Am Chem Soc, 1984, 106: 6856–58

    Article  CAS  Google Scholar 

  74. Suslick KS, Doktycz SJ. Ultrasonic irradiation of copper powder. Chem Mater, 1989, 1(647): 6–8

    Article  CAS  Google Scholar 

  75. Suslick KS, Casadonte DJ, Doktycz SJ. The effects of ultrasound on nickel and copper powders. Solid State Ion, 1989, 32/33: 444–452

    Article  Google Scholar 

  76. Dhas NA, Raj CP, Gedanken A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater, 1998, 10: 1446–1452

    Article  CAS  Google Scholar 

  77. Mizukoshi Y, Oshima R, Maeda Y, Nagata Y. Preparation of platinum nanoparticles by sonochemical reduction of the Pt(II) ion. Langmuir, 1999, 15: 2733–2737

    Article  CAS  Google Scholar 

  78. Caruso RA, Ashokkumar M, Grieser F. Sonochemical formation of gold sols. Langmuir, 2002, 18: 7831–7836

    Article  CAS  Google Scholar 

  79. Su CH, Wu PL, Yeh CS. Sonochemical synthesis of well-dispersed gold nanoparticles at the ice temperature. J Phys Chem B, 2003, 107: 14240–14243

    Article  CAS  Google Scholar 

  80. Nemamcha A, Rehspringer JL, Khatmi D. Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution. J Phys Chem B, 2006, 110: 383–387

    Article  CAS  Google Scholar 

  81. Zhang JL, Du JM, Han BX, Liu ZM, Jiang T, Zhang ZF. Sonochemical Formation of single-crystalline gold nanobelts. Angew Chem Int Ed, 2006, 45: 1116–1119

    Article  CAS  Google Scholar 

  82. Liu YC, Zhong MY, Shan GY, Li YJ, Huang BQ, Yang GL. Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance raman scattering. J Phys Chem B, 2008, 112: 6484–6489

    Article  CAS  Google Scholar 

  83. Xu HX, Suslick KS. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano, 2010, 4(6): 3209–3214

    Article  CAS  Google Scholar 

  84. Geng J, Liu B, Xu L, Hu F N, Zhu JJ. Facile route to Zn-based II–VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir, 2007, 23: 10286–10293

    Article  CAS  Google Scholar 

  85. Zhu JJ, Xu S, Wang H, Zhu JM, Chen HY. Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Adv Mater, 2003, 15(2): 156–159

    Article  CAS  Google Scholar 

  86. Xu F, Yuan YF, Han HJ, Wu DP, Gao ZY, Jiang K. Synthesis of ZnO/CdS hierarchical heterostructure with enhancedphotocatalytic efficiency under nature sunlight. CrystEngComm, 2012, 14, 3615–3622

    Article  CAS  Google Scholar 

  87. Shen ZY, Wang Q, Yu YG, Zhou C, Wang Y. Sonochemistry synthesis and enhanced photocatalytic H2-production activity of nanocrystals embedded in CdS/ZnS/In2S3 microspheres. Nanoscale, 2012, 4: 2010–2017

    Article  CAS  Google Scholar 

  88. Yu JC, Yu J, Ho W, Zhang L. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun,. 2001, 1942–1943

  89. Qian D, Jiang JZ, Hansen PL. Preparation of ZnO nanocrystals via ultrasonic irradiation. Chem Commun, 2003, 1078–1079

  90. Xiong HM, Shchukin DG, Möhwald H, Xu Y, Xia YY. Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II). Angew Chem Int Ed, 2009, 48: 2727–2731

    Article  CAS  Google Scholar 

  91. Jung SH, Oh E, Lee KH, Yang Y, Park CG, Park WJ, Jeong SH. Sonochemical Preparation of shape-selective ZnO nanostructures. Crystal Growth Design, 2008, 8(1): 265–269

    Article  CAS  Google Scholar 

  92. Shen LM, Bao NZ, Prevelige PE, Gupta A. Escherichia coli bacteria-templated synthesis of nanoporous cadmium sulfide hollow microrods for efficient photocatalytic hydrogen production. J Phys Chem C, 2010, 114: 2551–2559

    Article  CAS  Google Scholar 

  93. Zhang D, Fu H, Shi L, Pan C, Li Q, Chu Y, Yu W. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg Chem, 2007, 46: 2446–2451

    Article  CAS  Google Scholar 

  94. Krishnan CVC, Burger J, Chu C. Polymer-assisted growth of molybdenum oxide Whiskers via a sonochemical process. J Phys Chem B, 2006, 110: 20182–20188

    Article  CAS  Google Scholar 

  95. Mao CJ, Pan HC, Wu XC, Zhu JJ, Chen HY. Sonochemical route for self-assembled V2O5 bundles with spindle-like morphology and their novel application in serum albumin sensing. J Phys Chem B, 2006, 110: 14709–14713

    Article  CAS  Google Scholar 

  96. Dutta DP, Sudarsan V, Srinivasu P, Vinu A, Tyagi AK, Indium oxide and europium/dysprosium doped indium oxide nanoparticles: Sonochemical synthesis, characterization, and photoluminescence studies. J Phys Chem C, 2008, 112: 6781–6785

    Article  CAS  Google Scholar 

  97. Sivakumar M, Takami T, Ikuta H, Towata A, Yasui K, Tuziuti T, Kozuka T, Bhattacharya D, Iida Y. Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: Observation of magnetization and its relaxation at low temperature. J Phys Chem B, 2006, 110: 15234–15243

    Article  CAS  Google Scholar 

  98. Geng J, Hou W H, Lv YN, Zhu JJ, Chen HY. One-dimensional BiPO4 nanorods and two-dimensional biocl lamellae: Fast low-mperature sonochemical synthesis, characterization, and growth mechanism. Inorg Chem, 2005, 44: 8503–8509

    Article  CAS  Google Scholar 

  99. Dutta DP, Ghildiyal R, Tyagi AK. Luminescent properties of doped zinc aluminate and zinc gallate white light emitting nanophosphors prepared via sonochemical method. J Phys Chem C, 2009, 113: 16954–16961

    Article  CAS  Google Scholar 

  100. Doktycz SJ, Suslick KS. Interparticle collisions driven by ultrasound. Science, 1990, 247: 1067–1069

    Article  CAS  Google Scholar 

  101. Wang J, Guo W, Liu SH, Li DL. Synthesis of CdSe and CdSe/TiO2 nanoparticles under multibubble sonoluminescence condition. Ultrason Sonochem, 2012, 19: 464–468

    Article  CAS  Google Scholar 

  102. Inoue M, Hayashi Y, Takizawa H, Suganuma K. Formation mechanism of nanostructured Ag films from Ag2O particles using a sonoprocess. Colloid Polym Sci, 2010, 288:1061–1069

    Article  CAS  Google Scholar 

  103. Zhu YP, Wang XK, Guo WL, Wang JG, Wang C. Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution. Ultrason Sonochem, 2010, 17: 675–679

    Article  CAS  Google Scholar 

  104. Xu HX, Suslick KS. Sonochemical preparation of functionalized graphenes. J Am Chem Soc, 2011, 133: 9148–9151

    Article  CAS  Google Scholar 

  105. Pol VG, Gedanken A, Calderon-Moreno J. Deposition of gold nanoparticles on silica spheres: A sonochemical approach. Chem Mater, 2003, 15: 1111–1118

    Article  CAS  Google Scholar 

  106. Pol VG, Motiei M, Gedanken A, Calderon-Moreno J, Mastai Y. Sonochemical deposition of air-stable iron nanoparticles on monodispersed carbon spherules. Chem Mater, 2003, 15: 1378–1384

    Article  CAS  Google Scholar 

  107. Pol VG, Grisaru H, Gedanken A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir, 2005, 21: 3635–3640

    Article  CAS  Google Scholar 

  108. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A. Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir, 2002, 18: 3352–3357

    Article  CAS  Google Scholar 

  109. Sun ZY, Li Z, Huang CL, Zhao YF, Zhang HY, Tao RT, Liu ZM. Ultrasonication-assisted uniform decoration of carbon nanotubes by various particles with controlled size and loading. Carbon, 2011, 49: 4376–4384

    Article  CAS  Google Scholar 

  110. Jesionek M, Nowak M, Szperlich P, Stróz D, Szala J, Jesionek K, Rzychon T. Sonochemical growth of antimony selenoiodide in multiwalled carbon nanotube. Ultrason Sonochem, 2012, 19: 179–185

    Article  CAS  Google Scholar 

  111. Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M. Sonochemical approach to the synthesis of Fe3O4@ SiO2 core-shell nanoparticles with tunable properties. ACS Nano, 2008, 2: 847–856

    Article  CAS  Google Scholar 

  112. Ghows N, Entezari MH. Sono-synthesis of core-shell nanocrystal (CdS/TiO2) without surfactant. Ultrason Sonochem, 2012, 19: 1070–1078

    Article  CAS  Google Scholar 

  113. Gao T, Wang T. Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell heterostructures. Chem Commun, 2004, 2558–2559

  114. Gao T, Li Q, Wang T. Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater, 2005, 17: 887–892

    Article  CAS  Google Scholar 

  115. Park JE, Saikawa M, Atobe M, Fuchigami T. Highly-regulated nanocoatings of polymer films on carbon nanofibers using ultrasonic irradiation. Chem Commun, 2006, 2708-2710

  116. Guibert G, Mikhailov S, Gedanken A. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology, 2008, 19: 245705–45711

    Article  CAS  Google Scholar 

  117. Abbasi AR, Morsali A. Ultrasound-assisted coating of silk yarn with silver chloride nanoparticles. Colloid Surf A: Physicochem Eng Aspects, 2010, 371:113–118

    Article  CAS  Google Scholar 

  118. Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A, Guebitz GM, Gedanken A. Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. Appl Mater Interf, 2009, 1(2): 361–366

    Article  CAS  Google Scholar 

  119. Perelshtein I, Ruderman Y, Perkas N, Traeger K, Tzanov T, Beddow J, Joyce E, Mason TJ, Blanes M, Molla K, Gedanken A. Enzymatic pre-treatment as a means of enhancing the antibacterial activity and stability of ZnO nanoparticles sonochemically coated on cotton fabrics. J Mater Chem, 2012, 22: 10736–10742

    Article  CAS  Google Scholar 

  120. Perelshtein I, Applerot G, Perkas N, Grinblat J, Gedanken A. A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles. Chem Eur J, 2012, 18: 4575–4582

    Article  CAS  Google Scholar 

  121. Miao JJ, Fu RL, Zhu JM, Xu K, Zhu JJ, Chen HY. Fabrication of Cd(OH)2 nanorings by ultrasonic chiselling on Cd(OH)2 nanoplates. Chem Commun, 2006, 3013-3015

  122. Ostwald W. Studien uber die bildung und umwandlung fester korper. Z Phys Chem, 1897, 22: 289–330

    CAS  Google Scholar 

  123. Jiang LP, Xu S, Zhu JM, Zhang JR, Zhu JJ, Chen HY. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg Chem, 2004, 43: 5877–5883

    Article  CAS  Google Scholar 

  124. Mayers BT, Liu K, Sunderland D, Xia YN. Sonochemical synthesis of trigonal selenium nanowires. Chem Mater, 2003, 15: 3852–3858

    Article  CAS  Google Scholar 

  125. Deng CH, Hu HM, Ge XQ, Han CL, Zhao DF, Shao GQ. One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason Sonochem, 2011, 18: 932–937

    Article  CAS  Google Scholar 

  126. Anandan S, Lee GJ, Wu JJ. Sonochemical synthesis of CuO nanostructures with different morphology. Ultrason Sonochem, 2012, 19: 682–686

    Article  CAS  Google Scholar 

  127. Shen QM, Jiang LP, Zhang H, Min QH, Hou WH, Zhu JJ. Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C, 2008, 112: 16385–16392

    Article  CAS  Google Scholar 

  128. Tao XJ, Sun L, Zhao YB. Sonochemical synthesis and characterization of disk-like copper microcrystals. Mater Chem Phys, 2011, 125: 219–223

    Article  CAS  Google Scholar 

  129. Han JS, Zhang H, Sun HZ, Zhou D, Yang B. Manipulating the growth of aqueous semiconductor nanocrystals through amine-promoted kinetic process. Phys Chem Chem Phys, 2010, 12: 332–336

    Article  CAS  Google Scholar 

  130. Baldan A. Review: Progress in Ostwald ripening theories and their applications to nickel-base superalloys. Part I: Ostwald ripening theories. J Mater Sci, 2002, 37: 2171–2202

    Article  CAS  Google Scholar 

  131. Penn RL, Banfield JF. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281: 969–971

    Article  CAS  Google Scholar 

  132. Penn R L. Kinetics of oriented aggregation. J Phys Chem B, 2004, 108: 12707–12712

    Article  CAS  Google Scholar 

  133. Niederberger M, Colfen H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys, 2006, 8: 3271–3287

    Article  CAS  Google Scholar 

  134. Tang ZY, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237–240

    Article  CAS  Google Scholar 

  135. Talapin DV, Shevchenko EV, Murray CB, Kornowski A, Forster S, Weller H. CdSe and CdSe/CdS nanorod solids. J Am Chem Soc, 2004, 126: 12984–12988

    Article  CAS  Google Scholar 

  136. Geng J, Zhu JJ, Chen HY. Sonochemical preparation of luminescent PbWO4 nanocrystals with morphology evolution. Cryst Growth Design, 2006, 6: 321–326

    Article  CAS  Google Scholar 

  137. Geng J, Lu D J, Zhu J J, Chen H Y. Antimony(III)-doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route. J Phys Chem B, 2006, 110: 13777–13785

    Article  CAS  Google Scholar 

  138. Geng J, Lv YN, Lu DJ, Zhu JJ. Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structure. Nanotechnology, 2006, 17: 2614–2620

    Article  CAS  Google Scholar 

  139. Tian Y, Chen BJ, Yu HQ, Hua RN, Li XP, Sun JS, Cheng LH, Zhong HY, Zhang JS, Zheng YF, Yu TT, Huang LB. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres. J Colloid Interf Sci, 2011, 360: 586–592

    Article  CAS  Google Scholar 

  140. Mao CJ, Geng J, Wu XC, Zhu JJ. Selective synthesis and luminescence properties of self-assembled SrMoO4 superstructures via a facile sonochemical route. J Phys Chem C, 2010, 114: 1982–1988

    Article  CAS  Google Scholar 

  141. Liu W, Cao L X, Su G, Liu H S, Wang X F, Zhang L. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property. Ultrason Sonochem, 2010, 17: 669–674

    Article  CAS  Google Scholar 

  142. Wang YF, Li JW, Hou YF, Yu XY, Su CY, Kuang DB. Hierarchical tin oxide octahedra for highly efficient dye-sensitized solar cells. Chem Eur J, 2010, 16: 8620–8625

    Article  CAS  Google Scholar 

  143. Hu XY, Tang YW, Xiao T, Jiang J, Jia ZY, Li DW, Li BH, Luo LJ. Rapid Synthesis of single-crystalline SrSn(OH)6 nanowires and the performance of SrSnO3 nanorods used as anode materials for Li-ion battery. J Phys Chem C, 2010, 114: 947–952

    Article  CAS  Google Scholar 

  144. Yang JL, Huang WZ, Cheng YL, Wang CJ, Zhao Y, Zhu L, Cao XQ. Morphology-controlled synthesis of gadolinium fluoride nanocrystals via ultrasonic and salt assisted method. CrystEngComm, 2012, 14: 899–907

    Article  CAS  Google Scholar 

  145. Xu K, Mao CJ, Geng J, Zhu JJ. The synthesis of PbF2 nanorods in a microemulsion system. Nanotechnology, 2007, 18: 315604–315609

    Article  CAS  Google Scholar 

  146. Rai P, Jo JN, Lee IH, Yu YT. Fabrication of 3D rotor-like ZnO nanostructure from 1D ZnO nanorods and their morphology dependent photoluminescence property. Solid State Sci, 2010, 12: 1703–1710

    Article  CAS  Google Scholar 

  147. Ni YH, Li GY, Hong JM. Ultrasonic assisted synthesis, characterization and influence factors of monodispersed dumbbell-like YF3 nanostructures. Ultrason Sonochem, 2010, 17: 509–514

    Article  CAS  Google Scholar 

  148. Shi JJ, Wang YJ, Ma Y, Shen QM, Zhu JJ. Sonoelectrochemical synthesis and assembly of bismuth-antimony alloy: From nanocrystals to nanoflakes. Ultrason Sonochem, 2012, 19: 1039–1043

    Article  CAS  Google Scholar 

  149. Ding YH, Li CY, Guo R. Facile fabrication of pomponlike microarchitectures of lanthanum molybdate via an ultrasound route. Ultrason Sonochem, 2010, 17: 46–54

    Article  CAS  Google Scholar 

  150. Dang F, Kato K, Imai H, Wada S, Haneda H, Kuwabara M. Growth of BaTiO3 nanoparticles in ethanol-water mixture solvent under an ultrasound-assisted synthesis. Chem Eng J, 2011, 170: 333–337

    Article  CAS  Google Scholar 

  151. Bastami TR, Entezari MH. A novel approach for the synthesis of superparamagnetic Mn3O4 nanocrystals by ultrasonic bath. Ultrason Sonochem, 2012, 19: 560–569

    Article  CAS  Google Scholar 

  152. Chen DL, Yoo SH, Huang QS, Ali G, Cho SO. Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance. Chem Eur J, 2012, 18: 5192–5200

    Article  CAS  Google Scholar 

  153. He CX, Lei BX, Wang YF, Su CY, Fang YP, Kuang DB. Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells. Chem Eur J, 2010, 16: 8757–8761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiPing Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, J., Jiang, L. & Zhu, J. Crystal formation and growth mechanism of inorganic nanomaterials in sonochemical syntheses. Sci. China Chem. 55, 2292–2310 (2012). https://doi.org/10.1007/s11426-012-4732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4732-5

Keywords

Navigation