Skip to main content
Log in

The change in thickness of the solidified liquid layer rather than the immobilized mass determines the frequency response of a quartz crystal microbalance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The “solidified liquid layer” model has been examined using a quartz crystal microbalance (QCM) with a polymeric matrix. The model is shown to give a reasonable explanation for the following experimental observations: (i) The opposite response of the QCM and surface plasmon resonance (SPR) for the activation process; (ii) the marked difference in the responses for IgG/anti-IgG interaction between QCM and SPR. Theoretical analysis and experimental results indicated that QCM is sensitive to the thickness change of the “solidified liquid layer” but not the mass of captured biomolecules (i.e., the immobilized mass), implying caution must be taken in interpreting QCM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper MA, Singleton VT. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit, 2007, 20: 154–184

    Article  CAS  Google Scholar 

  2. Hook F, Voros J, Rodahl M, Kurrat R, Boni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B, 2002, 24: 155–170

    Article  CAS  Google Scholar 

  3. Jordan JL, Fernandez EJ. QCM-D Sensitivity to protein adsorption reversibility. Biotechnol Bioeng, 2008, 101: 837–842

    Article  CAS  Google Scholar 

  4. Hemmersam AG, Rechendorff K, Foss M, Sutherland DS, Besenbacher F. Fibronectin adsorption on gold, Ti-, and Ta-oxide investigated by QCM-D and RSA modelling. J Colloid Interface Sci, 2008, 320: 110–116

    Article  CAS  Google Scholar 

  5. Dmitriev DA, Massino YS, Segal OL. Kinetic analysis of interactions between bispecific monoclonal antibodies and immobilized antigens using a resonant mirror biosensor. J Immunol Methods, 2003, 280: 183–202

    Article  CAS  Google Scholar 

  6. Hianik T, Ostatna V, Sonlajtnerova M, Grman I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry, 2007, 70: 127–133

    Article  CAS  Google Scholar 

  7. Tombelli S, Minunni A, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 2005, 67: 135–141

    Article  CAS  Google Scholar 

  8. Liss M, Petersen B, Wolf H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem, 2002, 74: 4488–4495

    Article  CAS  Google Scholar 

  9. Caruso F, Rodda E, Furlong DF, Niikura K, Okahata Y. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Anal Chem, 1997, 69: 2043–2049

    Article  CAS  Google Scholar 

  10. Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem, 2001, 73: 5796–5804

    Article  CAS  Google Scholar 

  11. Mecea VM. Is quartz crystal microbalance really a mass sensor? Sens Actuators A, 2006, 128: 270–277

    Article  Google Scholar 

  12. Bingen P, Wang G, Steinmetz NF, Rodahl M, Richter RP. Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach. Anal Chem, 2008, 80: 8880–8890

    Article  CAS  Google Scholar 

  13. Tsortos A, Papadakis G, Gizeli E. Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: A study with QCM-D. Biosens Bioelectron, 2008, 24: 836–841

    Article  CAS  Google Scholar 

  14. Larsson C, Rodahl M, Hook F. Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal Chem, 2003, 75: 5080–5087

    Article  CAS  Google Scholar 

  15. Voinova MV, Rodahl M, Jonson M, Kasemo B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Phys Scr, 1999, 59: 391–396

    Article  CAS  Google Scholar 

  16. Ma HW, Fu L, Li W, Zhang YZ, Li MW. Real-time measurement of the mass of water expelled by poly(N-isopropylacrylamide) brushes upon thermo-induced collapse. Chem Commun, 2009, 3428-3430

  17. Wang ZH, Kuckling D, Johannsmann D. Temperature-induced swelling and de-swelling of thin poly(N-isopropylacrylamide) gels in water: Combined acoustic and optical measurements. Soft Mater, 2003, 1: 353–364

    Article  CAS  Google Scholar 

  18. Plunkett MA, Wang ZH, Rutland MW, Johannsmann D. Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir, 2003, 19: 6837–6844

    Article  CAS  Google Scholar 

  19. Laschitsch A, Menges B, Johannsmann D. Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl Phys Lett, 2000, 77: 2252–2254

    Article  CAS  Google Scholar 

  20. Zhang GZ, Wu C. Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol Rapid Commun, 2009, 30: 328–335

    Article  Google Scholar 

  21. Ma HW, He JA, Zhu ZQ, Lv BE, Li D, Fan CH, Fang J. A quartz crystal microbalance-based molecular ruler for biopolymers. Chem Commun, 2010, 46: 949–951

    Article  CAS  Google Scholar 

  22. Huang M, He JA, Gan JH, Ma HW. Solidified liquid layer model makes quartz crystal microbalance a convenient molecular ruler. Colloids Surf B, 2011, 85: 92–96

    Article  CAS  Google Scholar 

  23. Zhang YZ, Du BY, Chen XN, Ma HW. Convergence of dissipation and impedance analysis of quartz crystal microbalance studies. Anal Chem, 2009, 81: 642–648

    Article  CAS  Google Scholar 

  24. Ma HW, He JA, Liu X, Gan JH, Jin G, Zhou JH. Surface initiated polymerization from substrates of low initiator density and its applications in biosensors. ACS Appl Mater Interf, 2010, 2: 3223–3230

    Article  CAS  Google Scholar 

  25. He JA, Wu YZ, Wu J, Mao X, Fu L, Qian TC, Fang J, Xiong CY, Xie JL, Ma HW. Study and application of a linear frequency-thickness relation for surface-initiated atom transfer radical polymerization in a quartz crystal microbalance. Macromolecules, 2007, 40: 3090–3096

    Article  CAS  Google Scholar 

  26. Fu L, Chen XN, He JN, Xiong CY, Ma HW. Study viscoelasticity of ultrathin poly(oligo(ethylene glycol) methacrylate) brushes by a quartz crystal microbalance with dissipation. Langmuir, 2008, 24: 6100–6106

    Article  CAS  Google Scholar 

  27. Sun L, Dai JH, Baker GL, Bruening ML. High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates. Chem Mater, 2006, 18: 4033–4039

    Article  CAS  Google Scholar 

  28. Tugulu S, Klok HA. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes-under cell culture conditions. Biomacromolecules, 2008, 9: 906–912

    Article  CAS  Google Scholar 

  29. Zhang YX, He JA, Zhu Y, Chen H, Ma HW. In situ observation of metal-S bonds breaking induced by phosphate buffered saline. Chem Commun, 2011,47:1190–1192

    Article  CAS  Google Scholar 

  30. Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science, 2002, 295: 1702–1705

    Article  CAS  Google Scholar 

  31. Muguruma H, Nagata R, Nakamura R, Sato K, Uchiyama S, Karube I. Sensor chip using a plasma-polymerized film for surface plasmon resonance biosensors: Reliable analysis of binding kinetics. Anal Sci, 2000, 16: 347–348

    Article  CAS  Google Scholar 

  32. Stewart ME, Yao JM, Maria J, Gray SK, Rogers JA, Nuzzo RG. Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals. Anal Chem, 2009, 81: 5980–5989

    Article  CAS  Google Scholar 

  33. Seantier B, Breffa C, Felix O, Decher G. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers. J Phys Chem B, 2005, 109: 21755–21765

    Article  CAS  Google Scholar 

  34. Reimhult E, Larsson C, Kasemo B, Hook F. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal Chem, 2004, 76: 7211–7220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongWei Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Lu, Y., Fang, J. et al. The change in thickness of the solidified liquid layer rather than the immobilized mass determines the frequency response of a quartz crystal microbalance. Sci. China Chem. 55, 175–181 (2012). https://doi.org/10.1007/s11426-011-4467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4467-8

Keywords

Navigation