Skip to main content
Log in

Probing the bonding and structures of metal-organic radicals with zero energy electrons

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal-organic radicals are reactive and transient because of the existence of unpaired valence electrons, and thus the characterization of these open-shell systems is challenging. In our work, the radicals are synthesized by the reaction of bare metal atoms and organic ligands in a laser-vaporization supersonic molecular beam source and characterized with pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy. The molecular beam ZEKE technique routinely yields sub-meV spectral resolution and is a powerful means to study the molecular bonding and structures. This account presents several examples of single-photon ZEKE spectroscopic applications in determining metal binding modes and molecular conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green JC. Variable photon energy photoelectron-spectroscopy of transition-metal molecules. Acc Chem Res, 1994, 27: 131–137

    Article  CAS  Google Scholar 

  2. Green JC. Gas-phase photoelectron-spectra of d-block and f-block organometallic compounds. Struct Bonding, 1981, 43: 37–112

    CAS  Google Scholar 

  3. Oskam A. Ultraviolet photoelectron spectroscopy of transition metal complexes. In: Clark RJH, Hester RE, Eds. Spectroscopy of Inorganic-based Materials. New York: Wiley & Sons, 1987. 429–461

    Google Scholar 

  4. Li XR, Bancroft GM, Puddephatt RJ. Variable energy photoelectron spectroscopy: Periodic trends in d-orbital energies for organometallic compounds of the transition metals. Acc Chem Res, 1997, 30: 213–218

    Article  CAS  Google Scholar 

  5. Bancroft GM, Hu YF. Photoelectron spectra of inorganic and organometallic molecules in the gas phase using synchrotron radiation. In: Solomon EI, Lever ABP, Eds. Inorganic Electronic Structure and Spectroscopy. Volume 1: Methodology. New York: John Wiley & Sons, 1999. 443–512

    Google Scholar 

  6. Yang DS. Photoelectron spectroscopy. In: Lever ABP, Ed. Compre hensive Coordination Chemistry II: From Biology to Nanotechnology (McCleverty J and Meyers T Editors-in-Chief). Vol 2, Fundamentals. Elsevier: Oxford, 2003. 187–196

    Google Scholar 

  7. Lichtenberger DL, Kellogg GE. Experimental quantum-chemistry — Photoelectron spectroscopy of organotransition-metal complexes. Acc Chem Res, 1987, 20: 379–387

    Article  CAS  Google Scholar 

  8. Ryan MF, Richardson DE, Lichtenberger DL, Gruhn NE. Gas-phase ionization energetics, electron-transfer kinetics, and ion solvation thermochemistry of decamethylmetallocenes, chromocene, and cobaltocene. Organometallics, 1994, 13: 1190–1199.

    Article  CAS  Google Scholar 

  9. Mullerdethlefs K, Sander M, Schlag EW. 2-Color photoionization resonance spectroscopy of NO — Complete separation of rotational levels of NO+ at the ionization threshold. Chem Phys Lett, 1984, 112: 291–294

    Article  Google Scholar 

  10. Reiser G, Habenicht W, Mullerdethlefs K. The ionization-energy of nitric-oxide. Chem Phys Lett, 1988, 152: 119–123

    Article  CAS  Google Scholar 

  11. Mullerdethlefs K, Schlag EW. High-resolution zero kinetic-energy (ZEKE) photoelectron-spectroscopy of molecular-systems. Annu Rev Phys Chem, 1991, 42: 109–136

    Article  Google Scholar 

  12. Schlag EW. ZEKE Spectroscopy. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  13. Sohnlein BR, Yang DS. Pulsed-field ionization electron spectroscopy of group 6 Metal (Cr, Mo, and W) bis(benzene) sandwich complexes. J Chem Phys, 2006, 124: 134305/1–134305/8

    Article  CAS  Google Scholar 

  14. Nemeth GI, Ungar H, Yeretzian C, Selzle HL, Schlag EW. High-resolution spectroscopy of Ag2 + via long-lived ZEKE states. Chem Phys Lett, 1994, 228: 1–8

    Article  CAS  Google Scholar 

  15. Chupka WA, Grant ER. Anomalous intensities in zero-kinetic-energy spectra. J Phys Chem A, 1999, 103: 6127–6133

    Article  CAS  Google Scholar 

  16. Smalley RE, Wharton L, Levy DH. Fluorescence excitation spectrum of rotationally cooled NO2. J Chem Phys, 1975, 63: 4977–4989

    Article  CAS  Google Scholar 

  17. Dietz TG, Duncan MA, Powers DE, Smalley RE. Laser production of supersonic metal cluster beams. J Chem Phys, 1981, 74: 6511–6512

    Article  CAS  Google Scholar 

  18. Yang DS. Photoelectron spectra of metal-containing molecules with resolutions better than 1 meV. Coord Chem Rev, 2001, 214: 187–213

    Article  CAS  Google Scholar 

  19. Yang DS, Hackett PA. ZEKE Spectroscopy of free transition metal clusters. J Electron Spectrosc, 2000, 106: 153–169

    Article  CAS  Google Scholar 

  20. Muller-Dethlefs K, Schlag EW. Chemical applications of zero kinetic energy (ZEKE) photoelectron spectroscopy. Angew Chem Int Ed, 1998, 37: 1346–1374

    Article  CAS  Google Scholar 

  21. Yang DS. High-resolution electron spectroscopy of gas-phase metal-aromatic complexes. J Phys Chem Lett, 2011, 2: 25–33

    Article  CAS  Google Scholar 

  22. Reedijk J. Heterocyclic nitrogen-donor ligands. In: Wilkinson G, Gillard RD, McCleverty JA, Eds. Comprehensive Coordination Chemistry. Vol. II. Oxford: Pergamon, 1987. 73–98

    Google Scholar 

  23. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced Inorganic Chemistry. 6th ed. New York: Wiley, 1999

    Google Scholar 

  24. Albert MR, Yates JT. The Surface Scientist’s Guide to Organometallic Chemistry. Washington DC: American Chemical Society, 1987

    Google Scholar 

  25. Wang X, Sohnlein BR, Li SG, Fuller JF, Yang DS. Pulsed-field ionization electron spectroscopy and molecular structures of copper-(pyridine)n (n = 1, 2) complexes. Can J Chem, 2007, 85: 714–723

    Article  CAS  Google Scholar 

  26. Krasnokutski SA, Yang DS. High-resolution electron spectroscopy and σ/π-structures of M(pyridine) and M+(pyridine) (M = Li, Ca, and Sc) complexes. J Chem Phys, 2009, 130: 134313/1–134313/8

    Article  CAS  Google Scholar 

  27. Sohnlein BR, Li S, Yang D-S. Electron-spin multiplicities and molecular structures of neutral and ionic scandium-benzene complexes. J Chem Phys, 2005, 123: 214306/1–214306/7

    CAS  Google Scholar 

  28. Yang DS, Zgierski MZ, Rayner DM, Hackett PA, Martinez A, Salahub DR, Roy PN, Carrington T. The structure of Nb3O and Nb3O+ determined by pulsed-field ionization-zero electron kinetic-energy photoelectron-spectroscopy and density-functional theory. J Chem Phys, 1995, 103: 5335–5342

    Article  CAS  Google Scholar 

  29. Moore CE. Atomic Energy Levels. Washington DC: National Bureau of Standards, 1971

    Google Scholar 

  30. House DA. Ammonia and amine. In: Wilkinson G, Gillard RD, McCleverty JA, Eds. Comprehensive Coordination Chemistry. Vol. II. Oxford: Pergamon, 1987. 23–72

    Google Scholar 

  31. Wang X, Yang DS. Spectroscopy and structures of copper complexes with ethylenediamine and methyl-substituted derivatives. J Phys Chem A, 2006, 110: 7568–7576

    Article  CAS  Google Scholar 

  32. Wang X, Yang DS. A hydrogen-bond stabilized copper complex: Cu-ethylenediamine. J Phys Chem A, 2004, 108: 6449–6451

    Article  CAS  Google Scholar 

  33. Li SG, Fuller JF, Wang X, Sohnlein BR, Bhowmik P, Yang DS. Photoelectron spectroscopy and density functional theory of puckered ring structures of group 13 metal-ethylenediamine. J Chem Phys, 2004, 121: 7692–7700

    Article  CAS  Google Scholar 

  34. Miyawaki J, Sugawara K. ZEKE photoelectron spectroscopy of the silver- and copper-ammonia complexes. J Chem Phys, 2003, 119: 6539

    Article  CAS  Google Scholar 

  35. Li S, Sohnlein BR, Yang D-S, Miyawaki J, Sugawara K-I. Pulsed-field ionization electron spectroscopy and conformation of copper-diammonia. J Chem Phys, 2005, 122: 214316/1–214316/8

    CAS  Google Scholar 

  36. Miyawaki J, Sugawara K, Li S, Yang D-S. ZEKE spectroscopy and theoretical calculations of copper-methylamine complexes. J Phys Chem A, 2005, 109: 6697–6701

    Article  CAS  Google Scholar 

  37. Li SG, Sohnlein BR, Rothschopf GK, Fuller JF, Yang DS. Pulsed-field ionization zero electron kinetic energy spectroscopy and theoretical calculations of copper complexes: Cu-X(CH3)3 (X = N, P, As). J Chem Phys, 2003, 119: 5406–5413

    Article  CAS  Google Scholar 

  38. Li S, Rothschopf GK, Fuller JF, Yang DS. Photoelectron and photoionization spectroscopy of weakly bound aluminum-methylamine complexes. J Chem Phys, 2003, 118: 8636–8644

    Article  CAS  Google Scholar 

  39. Yang DS, Miyawaki J. Zero kinetic energy spectroscopy of AlNH3 complexes. Chem Phys Lett 1999, 313: 514.

    Article  CAS  Google Scholar 

  40. Di Palma T, Latini A, Satta M, Varvesi M, Giardini A. Pulsed laser reactive ablation of al in an ammonia atmosphere: Photoionization thresholds and structures of Al-NH3 clusters. Chem Phys Lett, 1998, 284: 184–190

    Article  Google Scholar 

  41. Lee JS, Krasnokutski SA, Yang DS. High-resolution electron spectroscopy, preferred metal-binding sites, and thermochemistry of lithium compexes of polycyclic aromatic hydrocarbons. J Chem Phys, 2011, 134: 024301/1–024301/9

    CAS  Google Scholar 

  42. Balaban AT, Durdevic J, Gutman I, Jeremic S, Radenkovic S. Correlations between local aromaticity indices of bipartite conjugated hydrocarbons. J Phys Chem A, 2010, 114: 5870–5877

    Article  CAS  Google Scholar 

  43. Krygowski TM, Cyranski MK. Structural aspects of aromaticity. Chem Rev, 2001, 101: 1385–1419

    Article  CAS  Google Scholar 

  44. Sohnlein BR, Li S, Yang DS. Electron-spin multiplicities and molecular structures of neutral and ionic scandium-benzene complexes. J Chem Phys, 2005, 123: 214306/1–214306/7

    CAS  Google Scholar 

  45. Zhang CH, Krasnokutski SA, Zhang B, Yang DS. Binding sites, rotational conformers, and electronic states of Sc-C6H5X (X = F, CH3, OH, and CN) probed by pulsed-field-ionization electron spectroscopy. J Chem Phys, 2009, 131: 054303/1–054303/9

    CAS  Google Scholar 

  46. Borst DR, Pratt DW. Toluene: Structure, dynamics, and barrier to methyl group rotation. J Chem Phys, 2000, 113: 3658–3669

    Article  CAS  Google Scholar 

  47. Kim K, Jordan KD. Theoretical calculations of the height of the barrier for OH rotation in phenol. Chem Phys Lett, 1994, 218: 261–269

    Article  CAS  Google Scholar 

  48. Lee JS, Kumari S, Yang DS. Conformational isomers and isomerization of group 6 (Cr, Mo, and W) metal-bis(toluene) sandwich complexes probed by variable-temperature electron spectroscopy. J Phys Chem A, 2010, 114: 11277–11284

    Article  CAS  Google Scholar 

  49. Ketkov SY, Sezle HL, Cloke FGN. Direct detection of individual bis(arene) rotational isomers in the gas phase by mass-analyzed threshold ionization spectroscopy. Angew Chem Int Ed, 2007, 46: 7072–7074

    Article  CAS  Google Scholar 

  50. Pophristic V, Goodman L. Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature, 2001, 411: 565–568

    Article  CAS  Google Scholar 

  51. Weinhold F. Chemistry — A new twist on molecular shape. Nature, 2001, 411: 539–541

    Article  CAS  Google Scholar 

  52. Schreiner PR. Teaching the right reasons: Lessons from the mistaken origin of the rotational barrier in ethane. Angew Chem Int Ed, 2002, 41: 3579–3581

    Article  CAS  Google Scholar 

  53. Bastiansen O, Hedberg L, Hedberg K. Reinvestigation of the molecular structure of 1,3,5,7-cyclooctatetraene by electron diffraction. J Chem Phys, 1957, 27: 1311–1317

    Article  CAS  Google Scholar 

  54. Lee JS, Lei Y, Kumari S, Yang DS. Metal coordination converts the tub-shaped cyclo-octatetraene into an aromatic Molecule: Electronic states and half-sandwich structures of group III metal-cyclo-octat-etraene complexes. J Chem Phys, 2009, 131: 104304/1–104304/7

    CAS  Google Scholar 

  55. Sohnlein BR, Fuller JF, Yang DS. Clamshell structure of sc(biphenyl) from high resolution photoelectron spectroscopy. J Am Chem Soc, 2006, 128: 10692–10693

    Article  CAS  Google Scholar 

  56. Merkt F, Softley T. High Resolution Laser Photoionization and Photoelectron Studies. In: Powis I, Baer T, Ng CY, Eds. Wiley Series in Ion Chemistry and Physics. Chichester: Wiley, 1995, 119–170

    Google Scholar 

  57. Ng CY. Vacuum ultraviolet spectroscopy and chemistry by photoionization and photoelectron methods. Ann Rev Phys Chem, 2002, 53: 101–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongSheng Yang.

Additional information

YANG DongSheng received his B.Sc. degree from Nanchang University, Nanchang, Jiangxi, China and Ph.D. degree from the University of Western Ontario, London, Ontario, Canada. He is a professor of chemistry at the University of Kentucky, Lexington, Kentucky, USA. His current research interests include laser-assisted synthesis, mass spectrometry, molecular spectroscopy, and computation of molecular clusters and ions. For further information, see: http://chem.as.uky.edu/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D. Probing the bonding and structures of metal-organic radicals with zero energy electrons. Sci. China Chem. 54, 1831–1840 (2011). https://doi.org/10.1007/s11426-011-4410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4410-z

Keywords

Navigation