Skip to main content
Log in

High yield fabrication of semiconducting thin-film field-effect transistors based on chemically functionalized single-walled carbon nanotubes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Here we report a simple and scalable method to fabricate high performance thin-film field-effect transistors (FETs) with high yield based on chemically functionalized single-walled carbon nanotubes (SWNTs) by organic radical initiators. The UV-Vis-NIR spectra, Raman spectra and electrical characterization demonstrated that metallic species in CoMoCat 65 and HiPco SWNTs could be effectively eliminated after reaction with some organic radical initiators. The effects of the substrate properties on the electrical properties of FET devices were investigated, and the results showed that the electrical properties of FET devices fabricated on high hydrophobic substrates were better than those on low hydrophobic substrates. Furthermore, it was found that FET devices based on 1,1′-azobis(cyanocyclohexane)(ACN)-modified CoMoCat 65 SWNTs exhibited more excellent electrical performance with effective mobility of ∼11.8 cm2/Vs and on/off ratio of ∼2×105 as compared with benzoyl peroxide (BPO)-modified CoMoCat 65 SWNTs and lauoryl peroxideand (LPO)-modified HiPco SWNTs, likely due to the introduction of the electron-withdrawing groups (CN group) on the SWNT surface. This method does not require nontrivial reaction conditions or complicated purification after reaction, therefore promising low-cost production of high-performance devices for macroelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snow ES, Novak JP, Campbell PM, Park D. Random networks of carbon nanotubes as an electronic material. Appl Phys Lett, 2003, 82: 2145–2147

    Article  CAS  Google Scholar 

  2. Hu L, Hecht DS, Gruner G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett, 2004, 4: 2513–2517

    Article  CAS  Google Scholar 

  3. Zhou Y, Gaur A, Hur SH, Kocabas C, Meitl MA, Shim M, Rogers JA. p-Channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett, 2004, 4: 2031–2035

    Article  CAS  Google Scholar 

  4. Shim M, Cao M. Carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 2006, 18: 304–309

    Article  Google Scholar 

  5. Unalan HE, Fanchini GG, Kanwal AA, Du Pasquier AA, Chhowalla MM. Design criteria for transparent single-wall carbon nanotube thin-film transistors. Nano Lett, 2006, 6: 677–682

    Article  CAS  Google Scholar 

  6. Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454: 495–500

    Article  CAS  Google Scholar 

  7. Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas TP, Li Y, Liu J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano letter, 2009, 9: 800–805

    Article  CAS  Google Scholar 

  8. Ryu K, Badmaev A, Wang C, Lin A, Patil N, Gomez L, Kumar A, Mitra S, Wong H, Zhou C. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett, 2009, 9: 189–197

    Article  CAS  Google Scholar 

  9. Topinka MA, Rowell MW, Gorden DG, McGehee MD, Hecht DS, Gruner G. Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett, 2009, 9: 1866–1871

    Article  CAS  Google Scholar 

  10. Krupke R, Hennrich F, Von Lohneysen H, Kappes M. Separatin of metallic from semiconducting single walled carbon nanotubes. Science, 2003: 301, 344-347

  11. Krupke R, Linden S, Rapp M, Kappes M. Thin film of metallic carbon nanotubes prepared by dielectrophoresis. Adv Mater, 2006, 18: 1468–1470

    Article  CAS  Google Scholar 

  12. Miyata Y, Maniwa Y, Kataura H. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. J Phys Chem B, 2006, 110: 25–29

    Article  CAS  Google Scholar 

  13. Li H, Zhou B, Gu L, Wang W, Fernando KAS, Kumar S, Allard LF, Sun YP. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc, 2004, 126: 1014–1016

    Article  CAS  Google Scholar 

  14. Wang W, Fernando KAS, Lin Y, Meziani MJ, Veca LM, Cao L, Zhang P, Kimani MM, Sun YP. Metallic single-walled carbon nanotubes for conductive nanocomposites. J Am Chem Soc, 2008, 130: 1415–1419

    Article  CAS  Google Scholar 

  15. Wei L, Wang B, Goh TH, Li LJ, Yang Y, Chan CP, Chen Y. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via co-surfactant extraction from narrow (n,m) distribution samples. J Phys Chem B, 2008, 112: 2771–2774

    Article  CAS  Google Scholar 

  16. Maeda Y, Kimura SI, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zang X, Tokumoto H, Saito R. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc, 2005, 127: 10287–10290

    Article  CAS  Google Scholar 

  17. Ju SY, Utz M, Papadimitrakopoulos F. Enrichment mechanism of semiconducting single-walled carbon nanotubes by surfactant amines. J Am Chem Soc, 2009, 131: 6775–6784

    Article  CAS  Google Scholar 

  18. LeMieux M, Roberts M, Barmann S, Jin YW, Kim JM, Bao Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science, 2008, 321: 101–103

    Article  CAS  Google Scholar 

  19. Lee CW, Weng C, Wei L, Chen Y, Chan MB, Tsai CH, Leou KC, Poa CH, Wang J, Li LJ. Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J Phys Chem C, 2008, 112: 12089–12091

    Article  CAS  Google Scholar 

  20. Zheng M, Dinner BA. Solution redox chemistry of carbon nanotubes. J Am Chem Soc, 2004, 126: 15490–15494

    Article  CAS  Google Scholar 

  21. Zheng M, Jagota A, Semke ED, Dinner BA, Lustig RA, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2: 338–342

    Article  CAS  Google Scholar 

  22. Chen F, Wang B, Chen Y, Li LJ. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett, 2007, 7: 3013–3017

    Article  CAS  Google Scholar 

  23. Nish A, Hwang JY, Doig J, Nicholas RJ. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotech, 2007, 2: 640–646

    Article  CAS  Google Scholar 

  24. Ju SY, Doll J, Sharma I, Papadimitrakopoulos F. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat Nanotech, 2008, 3: 356–362

    Article  CAS  Google Scholar 

  25. Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett, 2009, 9: 1497–1500

    Article  CAS  Google Scholar 

  26. An L, Fu Q, Lu CG, Liu J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J Am Chem Soc, 2004, 126: 10520–10521

    Article  CAS  Google Scholar 

  27. Wang C, Cao Q, Ozel T, Gaur A, Rogers JA, Shim M. Electronically selective chemical functionalization of carbon nanotubes: correlation between Raman spectral and electrical responses. J Am Chem Soc, 2005, 127: 11460–11468

    Article  CAS  Google Scholar 

  28. Balasubramanian K, Sordan R, Burghard M, Kern K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett, 2004, 4: 827–830

    Article  CAS  Google Scholar 

  29. Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano, 2008, 2: 2445–2452

    Article  CAS  Google Scholar 

  30. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotech, 2006, 1: 60–65

    Article  CAS  Google Scholar 

  31. Kanungo M, Lu H, Malliaras GG, Blanchet GB. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science, 2009, 323: 234–237

    Article  CAS  Google Scholar 

  32. Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan HW, Kittrell C, Hauge RH, Tour JM, Smalley RE. Electronic structure control of single walled carbon nanotube functionalization. Science, 2003, 301: 1519–1522

    Article  CAS  Google Scholar 

  33. McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in-situ functionalization, processing and mechanical properties of single-walled carbon nanotube-polypropylene composite fibers. J Phys Chem C, 2007, 111: 1592–1600

    Article  CAS  Google Scholar 

  34. Beigbeder A, Linares M, Devalckenaere M, Degée P, Claes M, Beljonne D, Lazzaroni R, Dubois P. CH-π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv Mater, 2008, 20: 1003–1007

    Article  CAS  Google Scholar 

  35. Zhao JW, Lee CW, Han XD, Chan-Park MB, Chen P, Li L J. Solution-processable semiconducting thin-film transistors using single-walled carbon nanotubes chemically modified by organic radical initiators. Chem Comm, 2009, 46: 7182–184

    Article  Google Scholar 

  36. Peng HQ, Reverdy P, Khabashesku VN, Margrave JL. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem Comm, 2003, 362-363

  37. Strano MS, Doom SK, Haroz EH, Kittrell C, Hauge RH, Smalley RE. Assignment of (n,m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett, 2003, 3: 1091–1096

    Article  CAS  Google Scholar 

  38. Wiltshire JG, Li LJ, Herz LM, Nicholas RJ, Glerup M, Sauvajol JL. Chirality dependent boron mediated growth of nitrogen doped single-walled carbon nanotubes. Phys Rev B, 2005, 72: 205431

    Article  Google Scholar 

  39. Li LJ, Glerup M, Khlobystov AN, Wiltshire JG, Sauvajol JL, Taylor RA, Nicholas RJ. The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. Carbon, 2006, 44: 2752–2757

    Article  CAS  Google Scholar 

  40. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT. Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K. J Am Chem Soc, 2000, 122: 2383–2384

    Article  CAS  Google Scholar 

  41. Rao AM, Chen J, Richter E, Schlecht U, Eklund PC, Haddon RC, Venkateswaran UD, Kwon YK, Tomanek D. Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes. Phys Rev Lett, 2001, 86: 3895–3898

    Article  CAS  Google Scholar 

  42. Zhang GY, Qi PF, Wang XR, Lu YR, Li XL, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai HJ. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science, 2006, 314: 974–977

    Article  CAS  Google Scholar 

  43. Papagelis K, Kalyva M, Tasis D, Parthenios J, Siokou A, Galiotis C. Covalently functionalized carbon nanotubes as macroinitiators for radical polymerization. Phys Stat Sol B, 2007, 244: 4046–4050

    Article  CAS  Google Scholar 

  44. Roberts ME, LeMieux MC, Bao ZN. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano, 2009, 3: 3287–3293

    Article  CAS  Google Scholar 

  45. Hiroyuki S, Yuzuru I, Kazuyuki H, Osamu T, Nobuyuki N. Potential shielding by the surface water layer in Kelvin probe force microscopy. Appl Phys Lett, 2002, 80: 1459–1461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianWen Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Qian, J., Shen, Y. et al. High yield fabrication of semiconducting thin-film field-effect transistors based on chemically functionalized single-walled carbon nanotubes. Sci. China Chem. 54, 1484–1490 (2011). https://doi.org/10.1007/s11426-011-4306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4306-y

Keywords

Navigation