Skip to main content
Log in

Organic optocouplers

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic optocoupler (OOC) or organic photocoupler, optical coupler is a novel and one of the most promising organic optoelectronic devices for its well electrical isolation and anti-jamming ability in long-distance and real-time digital communications. The performance parameters of OOC were greatly raised during the past decade, and its development was strongly associated with basic organic devices such as organic light emitting diodes (OLED), organic photodiodes (OPD) and organic phototransistors (OPT) etc. Here we describe the principles of OOC, review recent breakthroughs in this field, and summarize the photosensor and light emitting parts which could be used in the device. Key technical points, such as current transfer ratio, frequency, matching and stability were also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Heeger AJ. Optocoupler made from semiconducting polymers. J Electron Mat, 1994, 23(9): 925–928

    Article  CAS  Google Scholar 

  2. Dong GF, Hu Y, Jiang CY, Wang LD, Qiu Y. Organic photocouplers consisting of organic light-emitting diodes and organic photoresistors. Appl Phys Lett, 2006, 88: 051110

    Article  Google Scholar 

  3. El Amrani A, Lucas B, Hijazi F, Moliton A. Visible light effect on the performance of photocouplers phototransistors based on pentacene. Mater Sci Eng B, 2008, 147: 303–306

    Article  Google Scholar 

  4. El Amrani A, Lucas B, Moliton A. Device based on the coupling of an organic light-emitting diode with a photoconductive material. Thin Solid Film, 2008, 516: 1626–1628

    Article  Google Scholar 

  5. Yao Y, Chen HY, Huang JS, Yang Y. Low voltage and fast speed allpolymeric optocouplers. Appl Phys Lett, 2007, 90: 053509

    Article  Google Scholar 

  6. Stathopoulos NA, Palilis LC, Vasilopoulou M, Botsialas A, Falaras P, Argitis P. All organic optocouplers based on polymer light-emitting diodes and photodetectors. Phys Stat Sol A, 2008, 205(11): 2522–2525

    Article  CAS  Google Scholar 

  7. Wang ZQ, Deng JC, Wu XM, Jing N, Hu ZY, Cheng XM, Hua YL, Wei J, Yin SG. The relationship of current transfer ratio and input light wavelengths in the organic photocoupler. Appl Phys Lett, 2009, 94: 193303

    Article  Google Scholar 

  8. Dong GF, Zheng HY, Duan L, Wang LD, Qiu Y. High-performance organic optocouplers based on C60-NPB heterojunction. Adv Mater, 2009, 21: 1–4

    Article  Google Scholar 

  9. Pais A, Banerjee A, Klotzkin D, Papautsky I. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip, 2008, 8: 794–800

    Article  CAS  Google Scholar 

  10. Pope M, Kallmann H, Magnante P. Electroluminescence in organic crystals. J Chem Phys, 1963, 38: 2042–2043

    Article  CAS  Google Scholar 

  11. Kampas FJ, Gouterman M. Porphyrin films electroluminescence of octaethylporphin. Chem Phys Lett, 1977, 48: 233–236

    Article  CAS  Google Scholar 

  12. Vincett PS, Barlow WA, Hann RA, Roberts GG. Electrical conduction and low voltage blue electroluminescence in vapor-deposited organic films. Thin Solid Films, 1982, 94: 171–179

    Article  CAS  Google Scholar 

  13. Tang CW, VanSlyke SA. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51(12): 913–915

    Article  CAS  Google Scholar 

  14. Adachi C, Tokito S, Tsutsui T, Saito S. Electroluminescence in organic films with three-layer structure. Jpn J Appl Phys, 1988, 27(2): L269–L271

    Article  CAS  Google Scholar 

  15. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Light emitting diodes based on conjugated polymers. Nature, 1990, 347: 539–541

    Article  CAS  Google Scholar 

  16. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698): 151–154

    Article  CAS  Google Scholar 

  17. Schaffert RM. New high-sensitivity organic photoconductor for electrophotography. J Res De, 1971, 15: 75–89

    CAS  Google Scholar 

  18. Dulmage WJ, Light WA, Marino SJ, Salzberg CD, Smith DL, Staudenmayer WJ. An aggregate organic photoconductor. I. Chemical composition, preparation, physical structure, and optical properties. J Appl Phys, 1978, 49, 5543–5554

    Article  CAS  Google Scholar 

  19. Weiss DS, Abkowitz M. Advances in organic photoconductor technology. Chem. Rev., 2010, 110, 479–526

    Article  CAS  Google Scholar 

  20. Schön JH, Kloc C, Bucher E, Batlog B. Effcient organic photovoltaic diodes based on doped pentacene. Nature, 2000, 403(27): 408–410

    Article  Google Scholar 

  21. Zhou Y, Wang L, Wang J, Pei J, Cao Y. Highly sensitive, air-stable photodetectors based on single organic sub-micrometer ribbons self-assembled through solution processing. Adv Mater, 2008, 20, 3745–3749

    Article  CAS  Google Scholar 

  22. Yan DH, Wang HB. The Introduction of Organic Heterojunctions. Beijing: Science Press, 2008

    Google Scholar 

  23. Qi PZ. Photosensitive Device and Its Application. Beijing: Science Press, 1987

    Google Scholar 

  24. Renshawa CK, Xu X, Forrest SR. A monolithically integrated organic photodetector and thin film transistor. Organic Electronics, 2010, 11: 175–178

    Article  Google Scholar 

  25. Kim DY, Sarasqueta G; So F. SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer. Sol Energ Mat Sol C, 2009, 93: 1452–1456

    Article  CAS  Google Scholar 

  26. Rauch T, Boeberl M, Tedde SF, Fuerst J, Kovalenko MV, Hesser G, Lemmer U, Heiss W, Hayden O. Near-infrared imaging with quantumdot sensitized organic photodiodes, Nat Photonic, 2009, 3: 332–336

    Article  CAS  Google Scholar 

  27. Ng TN, Wong WS, Chabinyc ML, Sambandan S, Street RA. Flexible image sensor array with bulk heterojunction organic photodiode. Appl Phys Lett, 2008, 92: 213303

    Article  Google Scholar 

  28. Guo YL, Yu G, Liu YQ. Functional organic field-effect transistors. Adv Mater, 2010, 22: 4427–4447

    Article  CAS  Google Scholar 

  29. Pal T, Arif M, Khondaker SI. High performance organic phototransistor based on regioregular poly(3-hexylthiophene). Nanotechnology, 2010, 21: 325201

    Article  Google Scholar 

  30. Narayan KS, Kumar N. Light responsive polymer field-effect transistor. Appl Phys Lett, 2001, 79: 1891–1893.

    Article  CAS  Google Scholar 

  31. Saragi TPI, Pudzich R, Fuhrmann T, Salbeck J. Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound. Appl Phys Lett, 2004, 84(13): 2334–2336

    Article  CAS  Google Scholar 

  32. Noh YY, Kim DY. Organic phototransistor based on pentacene as an efficient red light sensor. Solid State Electron. 2007, 51: 1052–1055

    Article  CAS  Google Scholar 

  33. Zan HW, Kao SC, Ouyang SR. Pentacene-based organic phototransistor with high sensitivity to weak light and wide dynamic range. IEEE Electr Device L, 2010, 31(2): 135–137

    Article  CAS  Google Scholar 

  34. Zan HW, Kao SC. New organic phototransistor with bias-modulated photosensitivity and bias-enhanced memory effect. IEEE Electr Device L, 2009, 30(7): 721–723

    Article  CAS  Google Scholar 

  35. Mok SM, Yan F, Chan HLW. Organic phototransistor based on poly(3-hexylthiophene)/TiO2 nanoparticle composite. Appl Phys Lett, 2008, 93: 023310

    Article  Google Scholar 

  36. Mukherjee B, Mukherjee M, Choi YG, Pyo SM. Organic phototransistor with n-type semiconductor channel and polymeric gate dielectric. J Phys Chem C, 2009, 113: 18870–18873

    Article  CAS  Google Scholar 

  37. Saragi TPI, Onken K, Suske I, Fuhrmann-Lieker T, Salbeck J. Ambipolar organic phototransistor. Opt Mater, 2007, 29: 1332–1337

    Article  CAS  Google Scholar 

  38. Hu Y, Dong GF, Liu C, Wang LD, Qiu Y. Dependency of organic phototransistor properties on the dielectric layers. Appl Phys Lett, 2006, 89: 072108

    Article  Google Scholar 

  39. Zukawa T, Naka S, Okada H, Onnagawa H. Organic hetero junction phototransistor. J Appl Phys, 2002, 91(3): 1171–1174

    Article  CAS  Google Scholar 

  40. Ye RB, Baba M, Ohta K, Suzuki T, Mori K. Ambipolar organic phototransistor based on F16CuPc/α6T pn heterojunction. SPIE Conference on Optical Sensors and Biophotonics, 2009, 7634: 76341–D

    Google Scholar 

  41. Campbell IH, Crone BK. A near infrared organic photodiode with gain at low bias voltage. Appl Phys Lett, 2009, 95: 263302

    Article  Google Scholar 

  42. Yu G, Cao Y, Srdanov G. High-sensitivity visible-blind UV detectors made with organic semiconductors. SPIE Conference on Photodetectors: Materials and Devices IV, 1999, 3629: 349–356

    CAS  Google Scholar 

  43. Chu CW, Shao Y, Shrotriya V, Yang Y. Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl Phys Lett, 2005, 86: 243506

    Article  Google Scholar 

  44. De Bettignies R, Leroy J, Firon M, Sentein C. Accelerated lifetime measurements of P3HT:PCBM solar cells. Synth Met, 2006, 156: 510–513

    Article  Google Scholar 

  45. Qiu Y, Hu YC, Dong GF, Wang LD, Xie JF, Ma YN. H2O effect on the stability of organic thin-film field-effect transistors. Appl Phys Lett, 2003, 83: 1644–1645

    Article  CAS  Google Scholar 

  46. Yang XN, Van D, Jeroen KJ, Janssen RAJ, Michels MAJ, Loos, J. Morphology and thermal stability of the active layer in poly(pphenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules, 2004, 37: 2151–2158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiFang Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Dong, G., Wang, L. et al. Organic optocouplers. Sci. China Chem. 54, 1017–1026 (2011). https://doi.org/10.1007/s11426-011-4283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4283-1

Keywords

Navigation