Skip to main content
Log in

One-dimensional metal phosphonates based on 6-phosphononicotinic acid: A structural and magnetic study

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The reactions of 6-phosphononicotinic acid (pnaH3) and metal salts result in three new compounds, namely, M(pnaH)-(H2O)3·H2O [M = Co(II) (1), Ni(II) (2), Zn(II) (3)]. These compounds are isostructural and contain 21 helical chains made up of corner-sharing {MO5N} octahedra and {PO3C} tetrahedra. The chains are further connected by extensive hydrogen bonds to form a three-dimensional supramolecular structure. Magnetic studies reveal that dominant antiferromagnetic interactions are mediated in both 1 and 2. Interestingly the dehydrated compound 1 shows metamagnetic behavior at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clearfield A. Metal phosphonate chemistry. Prog Inorg Chem, 1998, 47: 371–510

    Article  CAS  Google Scholar 

  2. Bao SS, Ma LF, Wang Y, Fang L, Zhu CJ, Li YZ, Zheng LM. Anion-directed self-assembly of lanthanide-notp compounds and their fluorescence, magnetic, and catalytic properties. Chem Eur J, 2007, 13: 2333–2343

    Article  CAS  Google Scholar 

  3. Ma LQ, Abney C, Lin WB. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev, 2009, 38: 1248–1256

    Article  CAS  Google Scholar 

  4. Mao JG. Structures and luminescent properties of lanthanide phosphonates. Coord Chem Rev, 2007, 251: 1493–1520

    Article  CAS  Google Scholar 

  5. Liu XG, Zhou K, Dong J, Zhu CJ, Bao SS. Homochiral lanthanide phosphonates with brick-wall-shaped layer structures showing chiroptical and catalytical properties. Inorg Chem, 2009, 48: 1901–1905

    Article  CAS  Google Scholar 

  6. Monot J, Petit M, Lane SM, Guisle I, Léger J, Tellier C, Talham DR, Bujoli B. Towards zirconium phosphonate-based microarrays for probing DNA-protein interaction: Critical influence of the location of the probe anchoring groups. J Am Chem Soc, 2008, 130: 6243–6251

    Article  CAS  Google Scholar 

  7. Amalric J, Mutin PH, Guerrero G, Ponche A, Sotto A, Lavigne JP. Phosphonate monolayers functionalized by silver thiolate species as antibacterial nanocoatings on titanium and stainless steel. J Mater Chem, 2009, 19: 141–149

    Article  CAS  Google Scholar 

  8. Maheswaran S, Chastanet G, Teat SJ, Mallah T, Sessoli R, Wernsdorfer W, Winpenny REP. Phosphonate ligands stabilize mixed-valent {MnIII 20−x MnII x clusters with large spin and coercivity. Angew Chem Int Ed, 2005, 44: 5044–5048

    Article  CAS  Google Scholar 

  9. Ma YS, Song Y, Zheng LM. Tridecanuclear and docosanuclear manganese phosphonate clusters with slow magnetic relaxation. Inorg Chem, 2007, 46: 5459–5461

    Article  CAS  Google Scholar 

  10. Yang BP, Prosvirin AV, Guo YQ, Mao JG. Co[HO2C(CH2)3NH-(CH2PO3H)2]2: A new canted antiferromagnet. Inorg Chem, 2008, 47: 1453–1459

    Article  CAS  Google Scholar 

  11. Cao DK, Xie XJ, Li YZ, Zheng LM. Copper diphosphonates with zero-, one- and two- dimensional structures: Ferrimagnetism in layer compound Cu3(ImhedpH)2·2H2O [ImhedpH4 = (1-C3H3N2)CH2C(OH)-(PO3H2)2]. Dalton Trans, 2008, 5008–5015

  12. Li JT, Keene TD, Cao DK, Decurtins S, Zheng LM. [M(OOCC6H4-PO3H)(H2O)] (M(II) = Mn, Co, Ni): Layered metal phosphonates showing variable magnetic behavior. CrystEngComm, 2009, 11: 1255–1260

    Article  CAS  Google Scholar 

  13. Wang PF, Bao SS, Zhang SM, Cao DK, Liu XG, Zheng LM. Pillared layered metal phosphonates showing field-induced magnetic transitions. Eur J Inorg Chem, 2010, 895–901

  14. Yang TH, Liao Y, Zheng LM, Dinnebier RE, Su YH, Ma J. Tuning the field-induced magnetic transition in a layered cobalt phosphonate by reversible dehydration-hydration process. Chem Commun, 2009, 3023–3025

  15. Palii AV, Reu OS, Ostrovsky SM, Klokishner SI, Tsukerblat BS, Sun ZM, Mao JG, Prosvirin AV, Zhao HH, Dunbar KR. A highly anisotropic cobalt(II)-based single-chain magnet: Exploration of spin canting in an antiferromagnetic array. J Am Chem Soc, 2008, 130: 14729–14738

    Article  CAS  Google Scholar 

  16. Bernot K, Luzon J, Sessoli R, Vindigni A, Thion J, Richeter S, Leclercq D, Larionova J, Lee A. The canted antiferromagnetic approach to single-chain magnets. J Am Chem Soc, 2008, 130: 1619–1627

    Article  CAS  Google Scholar 

  17. Loran JS, Naylor RA, Williams A. Direct N-methylation of 2-pyridylphosphonic acids by diazomethane. J Chem Soc, Perkin Trans, 1976, 1444–1447

  18. Kahn O. Molecular Magnetism. New York: Wiley-VCH, 1993

    Google Scholar 

  19. SAINT, Program for Data Extraction and Reduction, Siemens Analytical X-ray Instruments, Madison, WI, 1994–1996

  20. SHELXTL (version 5.0), Reference Manual, Siemens Industrial Automation, Analytical Instruments, Madison, WI, 1995

    Google Scholar 

  21. Wang XY, Wang ZM, Gao S. Detailed magnetic studies on Co(N3)2(4-acetylpyridine)2: A weak-ferromagnet with a very big canting angle. Inorg Chem, 2008, 47: 5720–5726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMin Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Duan, Y. & Zheng, L. One-dimensional metal phosphonates based on 6-phosphononicotinic acid: A structural and magnetic study. Sci. China Chem. 53, 2112–2117 (2010). https://doi.org/10.1007/s11426-010-4097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4097-6

Keywords

Navigation