Skip to main content
Log in

Theoretical study of interactions between human adult hemoglobin and acetate ion by polarizable force field and fragmentation quantum chemistry methods

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A series of theoretical approaches, including conventional FF03 and FF03-based polarization model, as well as the generalized energy-based fragmentation (GEBF) quantum chemistry method, have been applied to investigate the interactions between acetate ion (CH3COO) and the α-subunit of human adult hemoglobin (designated as Hb-α) at four binding sites (Lys16, Lys90, Arg92, and Lys127), respectively. The FF03-based polarizable force fields show that the interaction energies between the CH3COO group and Hb-α follow the trend of Arg92 > Lys127 > Lys90 > Lys16. The complexation of CH3COO with Hb-α is governed by the long-range electrostatic interactions and steric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perutz M F. Structure and mechanism of hemoglobin. Br Med Bull, 1976, 32(3): 195–208

    CAS  Google Scholar 

  2. Perutz M F. Stereochemistry of cooperative effects in haemoglobin: haem-haem interaction and the problem of allostery. Nature, 1970, 228(21): 726–734

    Article  CAS  Google Scholar 

  3. Dash R K, Bassingthwaighte J B. Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann Biomed Eng, 2004, 32(12): 1676–1693

    Article  Google Scholar 

  4. Schay G, Smeller L, Tsuneshige A, Yonetani T, Fidy J. Allosteric effectors influence the tetramer stability of both R- and T-states of hemoglobin A. J Biol Chem, 2006, 281(36): 25972–25982

    Article  CAS  Google Scholar 

  5. Perrella M, Kilmartin V, Fogg J, Rossi-Bernardi L. Identification of the high and low affinity CO2-binding sites of human haemoglobin. Nature, 1975, 256(28): 759–761

    Article  CAS  Google Scholar 

  6. Nielsen M S, Weber R E. Antagonistic interaction between oxygenation-linked lactate and CO2 binding to human hemoglobin. Comp Biochem Physiol A, 2007, 146(3): 429–434

    Article  Google Scholar 

  7. Fang T-Y, Zou M, Simplaceanu V, Ho N T, and Ho C. Assessment of roles of surface histidyl residues in the molecular basis of the bohr effect and of β143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin. Biochem, 1999, 38(40): 13423–13432

    Article  CAS  Google Scholar 

  8. Benesch R, Benesch R E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun, 1967, 26(2): 162–167

    Article  CAS  Google Scholar 

  9. Duan Y, Wu C, Chowdhury S, Lee M C, Xiong G M, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J M, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem, 2003, 24(16): 1999–2012

    Article  CAS  Google Scholar 

  10. Jiang N, Ma J. Conformational simulations of aqueous solvated α-conotoxin GI and its single disulfide analogues using a polarizable force field model. J Phys Chem A, 2008, 112(40): 9854–9867

    Article  CAS  Google Scholar 

  11. Li S, Li W, Fang T. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules. J Am Chem Soc, 2005, 127(19): 7215–7226

    Article  CAS  Google Scholar 

  12. Li W, Fang T, Li S. A fragment energy assembler method for Hartree-Fock calculations of large molecules. J Chem Phys, 2006, 124(15): 154102/1–6

    Article  CAS  Google Scholar 

  13. Li S, Li W, Fang T, Ma J, Jiang Y. Low scaling quantum chemical (LSQC) program, ver. 1.1. Nanjing University, Nanjing, 2006

    Google Scholar 

  14. Li W, Li S, Jiang Y. Generalized energy-based fragmentation for computing the ground-state energies and properties of large molecules. J Phys Chem A, 2007, 111(11): 2193–2199

    Article  CAS  Google Scholar 

  15. Li S, Li W. Fragment energy approach to Hartree-Fock calculations of macromolecules. Annu Rep Prog Chem, Sect. C: Phys Chem, 2008, 104: 256–271

    Article  CAS  Google Scholar 

  16. Hua W, Fang T, Li W, Yu J G, Li S. Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. J Phys Chem A, 2008, 112(43): 10864–10872

    Article  CAS  Google Scholar 

  17. Deev V, Collins M A. Approximate ab initio energies by systematic molecular fragmentation. J Chem Phys, 2005, 122(15): 154102/1–12

    Article  CAS  Google Scholar 

  18. Collins M A, Deev V. Accuracy and efficiency of electronic energies from systematic molecular fragmentation. J Chem Phys, 2006, 125(10): 104104/1–15

    Article  CAS  Google Scholar 

  19. Mullin J M, Roskop L B, Pruitt S R, Collins M A, Gordon M S. Systematic fragmentation method and the effective fragment potential: an efficient method for capturing molecular energies. J Phys Chem A, 2009, 113(37): 10040–10049

    Article  CAS  Google Scholar 

  20. Berman H M, Westbrook J, Feng Z K, Filliland G, Bhat T N, Weissig H, Shindyalov llya N, Bourne P E. The protein data bank. Nucleic Acids Res, 2000, 28(1): 235–242

    Article  CAS  Google Scholar 

  21. Fermi G, Perutz M F, Shaanan B, Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J Mol Biol, 1984, 175(2): 159–174

    Article  CAS  Google Scholar 

  22. Darden T, York D, Pedersen L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12): 10089–10094

    Article  CAS  Google Scholar 

  23. Berendsen H J C, Postma J P M, Van Gunsteren W F, Di Nola A, Haak J R. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8): 3684–3690

    Article  CAS  Google Scholar 

  24. Ryckaert J P, Ciccotti G, Berendsen J C. Numerical integration of the Cartesian equation of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23(3): 327–341

    Article  CAS  Google Scholar 

  25. Case D A, Darden T A, Cheatham T E, III, Simmerling C L, Wang J, Duke R E, Luo R, Merz K M, Pearlman D A, Crowley M, Walker R C, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong K F, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews D H, Schafmeister C, Ross W S, Kollman P A. AMBER 9. University of California, San Francisco, 2006

    Google Scholar 

  26. Morita S, Sakai S. IMiCMO: a new integrated ab initio multicenter molecular orbitals method for molecular dynamics calculations in solvent cluster systems. J Comput Chem, 2001, 22(10): 1107–1112

    Article  CAS  Google Scholar 

  27. Exner T E, Mezey P G. The field-adapted ADMA approach: introducing point charges. J Phys Chem A, 2004, 108(19): 4301–4309

    Article  CAS  Google Scholar 

  28. Sakai S, Morita S. Ab initio integrated multi-center molecular orbitals method for large cluster systems: total energy and normal vibration. J Phys Chem A, 2005, 109(37): 8424–8429

    Article  CAS  Google Scholar 

  29. Jiang N, Ma J, Jiang Y. Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules. J Chem Phys, 2006, 124(11): 114112/1–9

    Article  CAS  Google Scholar 

  30. Dahlke E E, Truhlar D G. Electrostatically embedded many-body expansion for large systems, with applications to water clusters. J Chem Theory Comput, 2007, 3(1): 46–53

    Article  CAS  Google Scholar 

  31. Dahlke E E, Truhlar D G. Electrostatically embedded many-body expansion for simulations. J Chem Theory Comput, 2008, 4(1): 1–6

    Article  CAS  Google Scholar 

  32. Dahlke E E, Leverentz H R, Truhlar D G. Evaluation of the electrostatically embedded many-body expansion and the electrostatically embedded many-body expansion of the correlation energy by application to low-lying water hexamers. J Chem Theory Comput, 2008, 4(1): 33–41

    Article  CAS  Google Scholar 

  33. Foster J P, Weinhold F. Natural hybrid orbitals. J Am Chem Soc, 1980, 102(24): 7211–7218

    Article  CAS  Google Scholar 

  34. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, revision D.01. Wallingford: Gaussian, Inc., 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ma.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20825312), National Basic Research Program (Grant No. 2004CB719901), and the Fok Ying Tong Education Foundation (Grant No. 111013)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Jiang, N. & Ma, J. Theoretical study of interactions between human adult hemoglobin and acetate ion by polarizable force field and fragmentation quantum chemistry methods. Sci. China Ser. B-Chem. 52, 1925–1931 (2009). https://doi.org/10.1007/s11426-009-0273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0273-y

Keywords

Navigation