Skip to main content
Log in

Size-dependent hydroxyl radicals generation induced by SiO2 ultra-fine particles: The role of surface iron

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Oxidative stress and hydroxyl radicals (·OH) play important roles in adverse health effects caused by inhalable ambient air particles (PM10). The ultra-fine fraction of PM10 has been hypothesized as one of the critical contributors to ·OH generation. Both in vivo and in vitro studies have shown that ultra-fine particles (UFPs) or nano-particles generate more ·OH than larger particles with identical mass and composition. Both the surface area and surface-adsorbed redox-active metals have been suggested as factors to determine the oxidative capacity of UFPs. In this study, the ·OH-generating capability of different sizes of SiO2 particles was investigated in order to determine which factor influences particle-induced ·OH generation. The amount of ·OH generated in both acellular and cellular systems was quantified using a capillary electrophoresis method following exposure to SiO2 particles with diameters of 14, 100, and 500 nm. The amount of ·OH was strongly dependent on particle size, and a significant enhancement was observed only with 14 nm particles. Further studies indicated a close association between ·OH and iron ion concentration (R 2 = 0.812, p<0.01). Washed particles, with their surface iron being removed, did not generate ·OH. The iron-containing leachate from these washings was able to enhance ·OH production as untreated particles did. Therefore, the presence of adsorbed iron on the surface of the SiO2 particles is presented as a possible mechanism of UPFs-induced ·OH generation. The SiO2 acted as an inert substrate, and the surface of ultra-fine SiO2 particles acted as a carrier for iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes L S, Cass G R, Gone J, Ames M, Olmez I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ Sci Technol, 1998, 32(9): 1153–1161

    Article  CAS  Google Scholar 

  2. Chalupa D C, Morrow P E, Oberdörster G, Utell M J, Frampton M W. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect, 2004, 112(8): 879–882

    CAS  Google Scholar 

  3. Peters A, Wichmann H E, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med, 1997, 155(4): 1376–1383

    CAS  Google Scholar 

  4. Wichmann H E, Spix C, Tuch T, Wölke G, Peters A, Heinrich J, Kreyling WG, Heyder J. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass. Res Rep Health Eff Inst, 2000, (98): 5–86

    Google Scholar 

  5. Gilmour P S, Ziesenis A, Morrison E R, Vickers M A, Drost E M, Ford I, Karg E, Mossa C, Schroeppel A, Ferron G A, Heyder J, Greaves M, MacNee W, Donaldsona K. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol, 2004, 195(1): 35–44

    Article  CAS  Google Scholar 

  6. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect, 2006, 114(3): 328–333

    Google Scholar 

  7. Tao F, Gonzalez-Flecha B, Kobzik L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radical Bio Med, 2003, 35(4): 327–340

    Article  CAS  Google Scholar 

  8. González-Flecha B. Oxidant mechanisms in response to ambient air particles. Mol Aspects Med, 2004, 25(1–2): 169–182

    Article  CAS  Google Scholar 

  9. Oberdörster G. Toxicology of ultrafine particles: In vivo studies. Phil Trans R Soc A, 2000, 358(1775): 2719–2740

    Article  Google Scholar 

  10. Beck-Speier I, Dayal N, Karg E, Maier K L, Schumann G, Schulz H, Semmler M, Takenaka S, Stettmaier K, Bors W, Ghio A, Samet J M, Heyder J. Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radical Biol Med, 2005, 38(8): 1080–1092

    Article  CAS  Google Scholar 

  11. Dick C A J, Brown D M, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol, 2003, 15(1): 39–52

    Article  CAS  Google Scholar 

  12. Lingard J J N, Tomlin A S, Clarke A G, Healey K, Hay A W M, Wild C P, Routledge M N. A study of trace metal concentration of urban airborne particulate matter and its role in free radical activity as measured by plasmid strand break assay. Atmos Environ, 2005, 39(175): 2377–2384

    Article  CAS  Google Scholar 

  13. Brown D M, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med, 2000, 57(10): 685–691

    Article  CAS  Google Scholar 

  14. Brown D M, Wilson M R, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Applied Pharmacol, 2001, 175(3): 191–199

    Article  CAS  Google Scholar 

  15. Tokiwa H, Nobuyuki S, Nakanishi Y, Sagai M. 8-Hydroxyguanosine formed in human lung tissues and the association with diesel exhaust particles. Free Radical Biol Med, 1999, 27(11-12): 1251–1258

    Article  CAS  Google Scholar 

  16. Afaq F, Abidi P, Matin R, Rahman Q. Cytotoxicity, Pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol, 1998, 18(5): 307–312

    Article  CAS  Google Scholar 

  17. Donaldson K, Beswick P H, Gilmour P S. Free radical activity associated with the surface of particles: A unifying factor in determining biological activity? Toxicol Lett, 1996, 88(1–3): 293–298

    Article  CAS  Google Scholar 

  18. Li Y, Zhu T, Guo X, Shang Y. Hydroxyl radicals induced by quartz particles in lung alveolar macrophages: The role of surface iron. Prog Nat Sci, 2006, 16(10): 1138–1144

    Google Scholar 

  19. Buettner G R, Jurkiewicz B A. Catalytic Metals, Ascorbate and free radicals: Combinations to avoid. Radiat Res, 1996, 145(5): 532–541

    Article  CAS  Google Scholar 

  20. Hee S S, Won G B, Namhyun C. Effect of chelators and reductants on the mobilization of metals from ambient particulate matter. Environ Sci Technol, 2003, 37(16), 3531-3536

    Google Scholar 

  21. Coolen S A J, Huf F A, Reijenga J C. Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography. J Chromatogr B, 1998, 717(1-2): 119–124

    Article  CAS  Google Scholar 

  22. Cao Y H, Chu Q C, Ye J N. Determination of hydroxyl radical by capillary electrophoresis and studies on hydroxyl radical scavenging activities of Chinese herbs. Anal Bioanal Chem, 2003, 376(5): 691–695

    Article  CAS  Google Scholar 

  23. Galleano M, Aimo L, Puntarulo S. Ascorbyl radical/ascorbate ratio in plasma from iron overloaded rats as oxidative stress indicator. Toxicol Lett, 2002, 133: 192–201

    Article  Google Scholar 

  24. Rahman Q, Norwood J, Hatch G. Evidence That exposure of particulate air pollutants to human and rat alveolar macrophages leads to differential oxidative response. Biochem Biophys Res Commun, 1997, 240(3): 669–672

    Article  CAS  Google Scholar 

  25. Han J Y, Takeshita K, Utsumi H. Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radical Biol Med, 2001, 30(5): 516–525

    Article  CAS  Google Scholar 

  26. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang MY, Oberley T, Froines J, Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect, 2003, 111(4): 455–560

    CAS  Google Scholar 

  27. Shi T, Schins R P, Knaapen A M, Kuhlbusch T, Pitz M, Heinrich J, Borm P J. Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. J Environ Monit, 2003, 5(4): 550–556

    Article  CAS  Google Scholar 

  28. Kagan V E, Tyurina Y Y, Tyurin V A, Konduru N V, Potapovich A I, Osipov A N, Kisin E R, Schwegler-Berry D, Mercer R, Castranova V, Shvedova A A. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett, 2006, 165(1): 88–100

    Article  CAS  Google Scholar 

  29. Rizzio E, Giaveri G, Arginelli D, Gini L, Profumo A, Gallorin M. Trace elements total content and particle sizes distribution in the air particulate matter of a rural-residential area in north Italy investigated by instrumental neutron activation analysis. Sci Total Environ, 1999, 226(1): 47–56

    Article  CAS  Google Scholar 

  30. Fernández-Espinosa A J, Ternero-Rodriguey M, Barragán de la Rosa F J, Jiménez Sánchez J C. Size distribution of metals in urban aerosols in Seville (Spain). Atmos Environ, 2001, 35(14): 2595–2601

    Article  Google Scholar 

  31. Heal M R, Hibbs L R, Agius R M, Beverland L J. Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmos Environ, 2005, 39(8): 1417–1430

    Article  CAS  Google Scholar 

  32. De Freitas J M, Meneghini R. Iron and its sensitive balance in the cell. Mutat Res, 2001, 475(1–2): 153–159

    Google Scholar 

  33. Turi J L, Yang F, Garrick M D, Piantadosi C A, Ghio A J. The iron cycle and oxidative stress in the lung. Free Radical Biol Med, 2004, 36(7): 850–857

    Article  CAS  Google Scholar 

  34. Ghio A J, Carter J D, Richards J H, Brighton L E, Lay J C, Devlin R B. Disruption of normal iron homeostasis after bronchial instillation of an iron-containing particle. Am J Physiol Lung Cell Mol Physiol, 1998, 18(3): L396–L403

    Google Scholar 

  35. Smith K R, Aust A E. Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells. Chem Res Toxicol, 1997, 10(7): 828–834

    Article  CAS  Google Scholar 

  36. Nemmar A, Hoet P H M, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts M F, Vanbilloen H, Mortelmans L, Nemery B. Passage of inhaled particles into the blood circulation in humans. Circulation, 2002, 105(4): 411–415

    Article  CAS  Google Scholar 

  37. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect, 2006, 114(8): 1172–1178

    Article  CAS  Google Scholar 

  38. Oberdörster G, Ferin J, Lehner B E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect, 1994, 102(Suppl 5): 173–179

    Article  Google Scholar 

  39. Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdörster G, Kreyling W G. Efficient elimination of inhaled nanoparticles from the Alveolar region: Evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect, 2007, 115(5): 728–733

    CAS  Google Scholar 

  40. Adamson I Y, Letourneau H L, Bowden D H. Enhanced Macrophage-fibroblast interactions in the pulmonary interstitium increases fibrosis after silica injection to monocyte-depleted mice. Am J Pathol, 1989, 134(2): 411–418

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhu.

Additional information

Supported by the National Basic Research Priorities Program (Grant No. 2002CB410802) and the National Natural Science Foundation of China (Grant No. 20637020)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y., Zhu, T., Li, Y. et al. Size-dependent hydroxyl radicals generation induced by SiO2 ultra-fine particles: The role of surface iron. Sci. China Ser. B-Chem. 52, 1033–1041 (2009). https://doi.org/10.1007/s11426-009-0141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0141-9

Keywords

Navigation