Skip to main content
Log in

Singlet-triplet gaps in substituted carbenes predicted from block-correlated coupled cluster method

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The block correlated coupled cluster (BCCC) method, with the complete active-space self-consistent-field (CASSCF) reference function, has been applied to investigating the singlet-triplet gaps in several substituted carbenes including four halocarbenes (CHCl, CF2, CCl2, and CBr2) and two hydroxycarbenes (CHOH and C(OH)2). A comparison of our results with the experimental data and other theoretical estimates shows that the present approach can provide quantitative descriptions for all the studied carbenes. It is demonstrated that the CAS-BCCC method is a promising theoretical tool for calculating the electronic structures of diradicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jensen P, Bunker P R. The potential surface and stretching frequencies of \( \tilde X \) 3B1 methylene (CH2) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian. J Chem Phys, 1998, 89: 1327–1332

    Article  Google Scholar 

  2. Carter E A, Goddard III W A. Correlation-consistent singlet-triplet gaps in substituted carbenes. J Chem Phys, 1988, 88: 1752–1763

    Article  CAS  Google Scholar 

  3. Roos B O, Bruna P, Peyerimhoff S D, Shepard R, Cooper D L, Gerratt J, Raimondi M. Ab Initio Methods in Quantum Chemistry, II. New York: Wiley, 1987

    Google Scholar 

  4. Andersson K, Malmqvist P-Å, Roos B O, Sadlej A J, Wolinski K. Second-order perturbation theory with a CASSCF reference function. J Phys Chem, 1990, 94: 5483–5488

    Article  CAS  Google Scholar 

  5. Andersson K, Malmqvist P-Å, Roos B O. Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys, 1992, 96: 1218–1226

    Article  CAS  Google Scholar 

  6. Nakano H. Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J Chem Phys, 1993, 99: 7983–7992

    Article  CAS  Google Scholar 

  7. Mahapatra U S, Datta B, Bandyopadhyay B, Mukherjee D. State-specific multi-reference coupled cluster formulations: Two paradigms. Adv Quantum Chem, 1998, 30: 163–193

    Article  CAS  Google Scholar 

  8. Mahapatra U S, Datta B, Mukherjee D. A size-consistent state-specific multi-reference coupled cluster theory: Formal developments and molecular applications. J Chem Phys 1999, 110: 6171–6188

    Article  CAS  Google Scholar 

  9. Chattopadhyay S, Pahari D, Mukherjee D, Mahapatra U S. A state-specific approach to multireference coupled electron-pair approximation like methods: Development and applications. J Chem Phys, 2004, 120: 5968–5986

    Article  CAS  Google Scholar 

  10. Chattopadhyay S, Ghosh P, Mahapatra U S. Applications of size-consistent state-specific multi-reference coupled cluster (SS-MRCC) theory to study the potential energy curves of some interesting molecular systems. J Phys B, 2004, 37: 495–510

    Article  CAS  Google Scholar 

  11. Li X Z, Paldus J. General-model-space state-universal coupled-cluster theory: Connectivity conditions and explicit equations. J Chem Phys, 2003, 119: 5320–5333

    Article  CAS  Google Scholar 

  12. Li X Z, Paldus J. The general-model-space state-universal coupled-cluster method exemplified by the LiH molecule. J Chem Phys, 2003, 119: 5346–5357

    Article  CAS  Google Scholar 

  13. Li X Z, Paldus J. Performance of the general-model-space state-universal coupled-cluster method. J Chem Phys, 2004, 120:5890–5902

    Article  CAS  Google Scholar 

  14. Li X Z, Paldus J. General-model-space state-universal coupled-cluster methods for excited states: Diagonal noniterative triple corrections. J Chem Phys, 2006, 124: 034112

    Google Scholar 

  15. Hanrath M. An exponential multireference wave-function Ansatz. J Chem Phys, 2005, 123: 084102

    Google Scholar 

  16. Pittner J, Demel O. Towards the multireference Brillouin-Wigner coupled-clusters method with iterative connected triples: MR BWCCSDT-alpha approximation. J Chem Phys, 2005, 122: 181101

    Google Scholar 

  17. Li S. Block-correlated coupled cluster theory: The general formulation and its application to the antiferromagnetic Heisenberg model. J Chem Phys, 2004, 120: 5017–5026

    Article  CAS  Google Scholar 

  18. Ma J, Li S, Li W. A multireference configuration interaction method based on the separated electron pair wave functions. J Comput Chem, 2006, 27: 39–47

    Article  Google Scholar 

  19. Fang T, Li S. Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: The formulation and test applications for single bond breaking. J Chem Phys, 2007, 127: 204108

    Google Scholar 

  20. Shen J, Fang T, Hua W J, Li S. Spectroscopic constants of single-bond diatomic molecules and singlet-triplet gaps of diradicals by the block-correlated coupled cluster theory. J Phys Chem A, 2008, 112:4703–4709

    Article  CAS  Google Scholar 

  21. Fang T, Shen J, Li S. Block correlated coupled cluster method with a complete active-space self-consistent-field reference function: the formula for general active spaces and its applications for multi-bond breaking systems. J Chem Phys, 2008, 128: 224107

    Google Scholar 

  22. Hirata S, Bartlett R J. High-order coupled-cluster calculations through connected octuple excitations. Chem Phys Lett, 2000, 321: 216–224

    Article  CAS  Google Scholar 

  23. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S J, Windus T L, Dupuis M, Montgomery J A. General atomic and molecular electronic structure system. J Comput Chem, 1993, 14: 1347–1363

    Article  CAS  Google Scholar 

  24. Werner H-J, Knowles P J. An efficient internally contracted multiconfiguration—reference configuration interaction method. J Chem Phys, 1988, 89: 5803–5814

    Article  CAS  Google Scholar 

  25. Knowles P J, Werner H-J. An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem Phys Lett, 1988, 145: 514–522

    Article  CAS  Google Scholar 

  26. Werner H-J. Third-order multireference perturbation theory The CASPT3 method. Mol Phys, 1996, 89: 645–661

    Article  CAS  Google Scholar 

  27. Celani P, Werner H-J. Multireference perturbation theory for large restricted and selected active space reference wave functions. J Chem Phys, 2000, 112: 5546–5557

    Article  CAS  Google Scholar 

  28. Werner H-J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Rauhut G, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Lloyd A W, McNicholas S J, Meyer W, Mura M E, Nicklaß A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T. MOLPRO, Version 2006.1, a package of ab initio programs

  29. Schwartz R L, Davico G E, Ramond T M, Lineberger W C. Singlet-triplet splittings in CX2 (X = F, Cl, Br, I) dihalocarbenes via negative ion photoelectron spectroscopy. J Phys Chem A, 1999, 103:8213–8221

    Article  CAS  Google Scholar 

  30. Sendt K, Bacskay G B. Spectroscopic constants of the \( \tilde X \) (1A1), ã(3B1), and Ã(1B1) states of CF2, CCl2, and CBr2 and heats of formation of selected halocarbenes: An ab initio quantum chemical study. J Chem Phys, 2000, 112: 2227–2238

    Article  CAS  Google Scholar 

  31. Barden C J, Schaerfer III H F. The singlet-triplet separation in dichlorocarbene: A surprising difference between theory and experiment. J Chem Phys, 2000, 112: 6515–6516

    Article  CAS  Google Scholar 

  32. Schwartz M, Marshall P. An ab initio investigation of halocarbenes. J Phys Chem A, 1999, 103: 7900–7906

    Article  CAS  Google Scholar 

  33. Sendt K, Schmidt T. W, Bacskay G B. Quantum chemical studies of the potential energy surfaces and vibrational frequencies of the \( \tilde X \) (1A″), ã(3A″), and Ã(1A″) states of CHCl and CFCl. Int J Quantum Chem, 2000, 76: 297–305

    Article  CAS  Google Scholar 

  34. Murray K K, Leopold D G, Miller T M, Lineberger W C. Photoelectron spectroscopy of the halocarbene anions HCF, HCCl, HCBr, HCI, CF2 , and CCl2 . J Chem Phys, 1988, 89: 5442–5453

    Article  CAS  Google Scholar 

  35. Mathews C W. The absorption spectrum of CF2. Can J Phys, 1967, 45:2355–2374

    CAS  Google Scholar 

  36. Baird N C, Taylor K F. Multiplicity of the ground state and magnitude of the T1-S0 gap in substituted carbenes. J Am Chem Soc, 1978, 100:1333–1338

    Article  CAS  Google Scholar 

  37. Feller D, Borden W T, Davison E R. The singlet and triplet state rotational potential surfaces for dihydroxcarbene. J Chem Phys, 1979, 71: 4987–4992

    Article  CAS  Google Scholar 

  38. Feller D, Borden W T, Davidson E R. Dependence of the singlet-triplet splitting in heterosubstituted carbenes on the heteroatom electronegativity and conformation. Chem Phys Lett, 1980, 71:22–26

    Article  CAS  Google Scholar 

  39. Mueller P H, Rondan N G, Houk K N, Harrison J F, Hooper D, Willen B H, Liebman J F. Carbene singlet-triplet gaps. Linear correlations with substituent π donation. J Am Chem Soc, 1981, 103: 5049–5052

    Article  CAS  Google Scholar 

  40. Schreiner P R, Reisenauer H P, Pichard F, Simmonett A C, Allen W D, Mátyus E, Császár A G. Capture of elusive hydroxymethylene and its fast disappearance through tunnelling. Nature, 2008, 453:906–909

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20625309 and 20433020), the National Basic Research Program (Grant No. 2004CB719901), the Ministry of Education of China (Grant No. NCET-04-0450), and Fok Ying Tong Education Foundation (Grant No. 91014)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Fang, T. & Li, S. Singlet-triplet gaps in substituted carbenes predicted from block-correlated coupled cluster method. Sci. China Ser. B-Chem. 51, 1197–1202 (2008). https://doi.org/10.1007/s11426-008-0139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0139-8

Keywords

Navigation