Skip to main content
Log in

Density functional study of magnetic exchange of dinuclear manganese complexes with the heteropolymolyanion: [MnII 2(Xn+Mo9O33)2]2(n−10)− (X = PV, AsV, SeVI)

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The magnetic exchange interactions between the dimanganese(II)-substituted complexes and the heteropolymolyanion, [MnII 2(Xn+Mo9O33)2]2(n−10)− (X = PV(I), AsV(II) and SeVI(III)), are investigated by using density functional theory combined with broken-symmetry approach (DFT-BS) method. The calculated magnetic exchange coupling constant (J) of complex II is in reasonable agreement with the responding experimental value and the negative J values indicate that antiferromagnetic exchange interactions exist in these complexes. Furthermore, the influence of the central heteroatom on the exchange coupling within the dimanganese core unit is studied from standpoints of geometry, spin density and frontier orbitals. It demonstrates that the change of the heteroatom X via PV-AsV-SeVI elongates the distances of Mn1...Mn2 and shortens the distances of Ob...Ob, and reduces the effectiveness of the superexchange pathways, consequently, decreasing the magnitude of the antiferromagnetic coupling constant, J, of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clemente-Juan J M, Coronado E. Magnetic clusters from polyoxometalate complexes. Coord Chem Rev, 1999, 193–195: 361–394

    Article  Google Scholar 

  2. Clemente-Juan J M, Coronado E, Gaita-Ariño A, Giménez-Saiz C, Chaboussant G, Güdel H, Burriel R, Mutka H. Magnetism in polyoxometalates: Anisotropic exchange interactions in the CoII 3 moiety of [Co3W(D2O)2(ZnW9O34)2]12− — A magnetic and inelastic neutron sca-ttering study. Chem Eur J, 2002, 8(24): 5701–5708

    Article  CAS  Google Scholar 

  3. Clemente-Juan, J M, Coronado, E, Gaita-Ariño, A, Giménez-Saiz C, Güdel H, Sieber A, Bircher R, Mutka H. Magnetic polyoxometalates: Anisotropic exchange interactions in the CoII 3 moiety of [(NaOH2) Co3(H2O)(P2W15O56)2]17−. Inorg Chem, 2005, 44(10): 3389–3395

    Article  CAS  Google Scholar 

  4. Lisnard L, Mialane P, Dolbecq A, Clemente-Juan J M, Marrot J, Clemente-Juan J M, Coronado E, Keita B, de Oliveira P, Nadjo L, Sécheresse F. Effect of cyanato, azido, carboxylato, and carbonato ligands on the formation of cobalt(II) polyoxometalates: Characterization, magnetic, and electrochemical studies of multinuclear cobalt clusters. Chem Eur J, 2007, 13(12): 3525–3536

    Article  CAS  Google Scholar 

  5. Kortz U, Isber S, Dickman M H, Ravot D. Sandwich-type silicotungstates: Structure and magnetic properties of the dimeric polyoxoanions [{SiM2W9O34(H2O)}2]12− (M = Mn2+, Cu2+, Zn2+). Inorg Chem, 2000, 39(13): 2915–2922

    Article  CAS  Google Scholar 

  6. Kortz U, Mbomekalle I M, Keita B, Nadjo L, Berthet P. Sandwich-type phosphotungstates: Structure, electrochemistry, and magnetism of the trinickel-substituted polyoxoanion [Ni3Na(H2O)2-(PW9O34)2]11−. Inorg Chem, 2002, 41(24): 6412–6416

    Article  CAS  Google Scholar 

  7. Mbomekalle I M, Keita B, Nierlich M, Kortz U, Berthet P, Nadjo L. Structure, magnetism, and electrochemistry of the multinickel polyoxoanions [Ni6As3W24O94(H2O)2]17−, [Ni3Na(H2O)2(AsW9O34)2]11−, and [Ni4Mn2P3W24O94(H2O)2]17−. Inorg Chem, 2003, 42(17): 5143–5152

    Article  CAS  Google Scholar 

  8. Kortz U, Nellutla S, Stowe A C, Dalal N S, van Tol J, Bassil B S. Structure and magnetism of the tetra-copper(II)-substituted heteropolyanion [Cu4K2(H2O)8(α-AsW9O33)2]8−. Inorg Chem, 2004, 43(1): 144–154

    Article  CAS  Google Scholar 

  9. Kortz U, Nellutla S, Stowe A C, Dalal N S, Rauwald U, Danquah W, Ravot D. Sandwich-type germanotungstates: Structure and magnetic properties of the dimeric polyoxoanions [M4(H2O)2(GeW9O34)2]12− (M = Mn2+, Cu2+, Zn2+, Cd2+). Inorg Chem, 2004, 43(7): 2308–2317

    Article  CAS  Google Scholar 

  10. Mialane P, Marrot J, Rivière E, Nebout J, Hervé G.. Structural characterization and magnetic properties of sandwich-type tungstoarsenate complexes. Study of a mixed-valent VIV 2/VV heteropolyanion. Inorg Chem, 2001, 40(1): 44–48

    Article  CAS  Google Scholar 

  11. Yamase T, Ishikawa E, Fukaya K, Nojiri H, Taniguchi T, Atake T. Spin-frustrated (VO)3 6+-triangle-sandwiching octadecatungstates as a new class of molecular magnets. Inorg Chem, 2004, 43(25): 8150–8157

    Article  CAS  Google Scholar 

  12. Yamase T, Fukaya K, Nojiri H, Ohshima Y. Ferromagnetic exchange interactions for Cu6 12+ and Mn6 12+ hexagons sandwiched by two B-α-[XW9O33]9− (X = AsIII and SbIII) ligands in D3d-symmetric polyoxotungstates. Inorg Chem, 2006, 45(19): 7698–7704

    Article  CAS  Google Scholar 

  13. Zheng S T, Yuan D Q, Zhang J, Yang G Y. Combination of lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions. 3. Structure and characterization of [Cu(enMe)2]2{[Cu(enMe)2(H2O)]2[Cu6(enMe)2(B-a-SiW9O34)2]} 4H2O. Inorg Chem, 2007, 46(11): 4569–4574

    Article  CAS  Google Scholar 

  14. Fukushima H F, Kobayashi A, Sasaki Y. Structure of a novel type of heteropolyanion: dicupro(II)-18-molybdodisilicate, [Cu2Si2Mo18−O66]12−. Acta Crystallogr Sect B-Struct Sci, 1981, 37(8): 1613–1615

    Article  Google Scholar 

  15. Yang Y Y, Xu L, Gao G G, Li F Y, Qiu Y F, Qu X S, Liu H. Transition-metal (MnII and CoII) complexes with the heteropolymolybdate fragment [AsVMo9O33]7−: Crystal structures, electrochemical and magnetic properties. Eur J Inorg Chem, 2007, (17): 2500–2505

  16. Yang Y Y, Xu L, Gao G G, Li F Y, Qu X S, Guo W H. A monomeric Mn2+ ion-linked heteropolymolybdoarsenate [Mn2(AsVMo9O33)2]10−: Synthesis, crystal structure and magnetic properties. Mol Struct, 2008, 886(1–3): 85–89

    Article  CAS  Google Scholar 

  17. Coronado E, Gómez-García C. Polyoxometalate-based molecular materials. Chem Rev, 1998, 98(1): 273–296

    Article  CAS  Google Scholar 

  18. Barra A, Gatteschi D, Müller A, Müller A, Döring J. Magnetic properties of high-nuclearity spin clusters. Fourteen-and fifteen-oxovanadium(IV) clusters. J Am Chem Soc, 1992, 114(22): 8509–8514

    Article  CAS  Google Scholar 

  19. Duclusaud H, Borshch S A. Electron delocalization and magnetic state of doubly-reduced polyoxometalates. J Am Chem Soc, 2001, 123(12): 2825–2829

    Article  CAS  Google Scholar 

  20. Manos M J, Tasiopoulos A J, Tolis E J, Lalioti N, Woollins J D, Slawin A M Z, Sigalas M P, Kabanos T A. A new class of ferromagnetically-coupled mixed valence vanadium (IV/V) Polyoxometalates. Chem Eur J, 2003, 9(3): 695–703

    Article  CAS  Google Scholar 

  21. Suaud N, Gaita-Ariño A, Clemente-Juan J M, Sánchez-Marín J, Coronado E. Ab initio calculations of the transfer parameters and coulombic repulsion and estimation of their effects on the electron delocalization and magnetic. Polyhedron, 2003, 22(14–17): 2331–2338

    Article  CAS  Google Scholar 

  22. Hegetschweiler K, Morgenstern B, Zubieta J, Hagrman P J, Lima N, Sessoli R, Totti F. Strong ferromagnetic interactions in [V8O14(H−2taci): An unprecedented large spin ground state for a vanadyl cluster. Angew Chem, 2004, 43(26): 3436–3439

    Article  CAS  Google Scholar 

  23. Rodríguez-Fortea A, Graaf C, Poblet J M. Ab initio and DFT study of the exchange coupling in the highly reduced polyoxoanion [PMo12O40(VO)2]5−. Chem Phys Lett, 2006, 428(1–3): 88–92

    Article  CAS  Google Scholar 

  24. Zueva E M, Borshch S A, Petrova M M, Chermette H, Kuznetsov A M. Ferromagnetic coupling in a mixed-valence hexavanadate core: Quantum-chemical forecast. Eur J Inorg Chem, 2007, 4317–4325

  25. Zueva E M, Chermette H, Borshch S A. Exchange coupling of paramagnetic ions in a polyoxometalate matrix: Density functional study of diiron(III) substituted γ-silicotungstates. Inorg Chem, 2004, 43(9): 2834–2844

    Article  CAS  Google Scholar 

  26. Wang Y, Zheng G, Hill C L, Geletii Y V, Hill C L, Musaev D G. Density functional study of the roles of chemical composition of di-transition-metal-substituted γ-Keggin polyoxometalate anions. J Phys Chem B, 2006, 110(11): 5230–5237

    Article  CAS  Google Scholar 

  27. Noodleman L, Norman J G. The Xα valence bond theory of weak electronic coupling. Application to the low-lying states of Mo2Cl4 8−. J Chem Phys, 1979, 70(11): 4903–4906

    Article  CAS  Google Scholar 

  28. Noodleman L. Valence bond description of antiferromagnetic coupling in transition metal dimmers, Exchange interaction in polynuclear complexes. II Antiferromagnetic coupling in binuclear oxo-bridged iron(III) complexes. J Chem Phys, 1981, 74(10): 5737–5743

    Article  CAS  Google Scholar 

  29. Noodleman L, Case D. Density functional theory of spin polarization and spin coupling in iron-sulfur clusters. Adv Inorg Chem, 1992, 38: 423–470

    Article  CAS  Google Scholar 

  30. Noodleman L, Davidson E R. Ligand spin polarization and antiferromagnetic coupling in transition metal dimmers. Chem Phys, 1986, 109(1): 131–143

    Article  Google Scholar 

  31. Mouesca J M, Chen J L, Noodleman L, Bashford D, Case D A. Density functional Poisson-Boltzmann calculations of redox potentials for iron-sulfur clusters. J Am Chem Soc, 1994, 116(26): 11898–11914

    Article  CAS  Google Scholar 

  32. Ruiz E, Cano J, Alvarez S. Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes. J Comp Chem, 1999, 20(13): 1391–1400

    Article  CAS  Google Scholar 

  33. McGrady J E, Stranger R, Lovell T. Broken-symmetry and approximate spin-projected potential energy curves for bimetallic systems: A density functional study of M2Cl9, M = CrIII, MoIII, WIII, and ReIV. J Phys Chem A, 1997, 101(35): 6265–6272

    Article  CAS  Google Scholar 

  34. McGrady J E, Stranger R, Lovell T. Electronic structure of face-and edge-shared bioctahedral systems: A comparison of M2Cl9 3− and M2Cl10 4−, M = Cr, Mo, W. Inorg Chem, 1998, 37(15): 3802–3808

    Article  CAS  Google Scholar 

  35. Bencini A, Gatteschi D. Xa-SW calculations of the electronic structure and magnetic properties of weakly coupled transition-metal clusters. The [Cu2C16]2− dimers. J Am Chem Soc, 1986, 108(19): 5763–5771

    Article  CAS  Google Scholar 

  36. Guerra C F, Snijders J G, te Velde G, Baerends E J. Towards an order-N DFT method. Theor Chem Acc, 1998, 99(6): 391–403

    Article  CAS  Google Scholar 

  37. Baerends E J, Autschbach J, Bérces A, Bickelhaupt F M, Bo C, Boerrigter P M, Cavallo L, Chong D P, Deng L, Dickson R M, Ellis D E, van Faassen M, Fan L, Fischer T H, Fonseca Guerra C, van Gisbergen S J A, Groeneveld J A, Gritsenko O V, Grüning M, Harris F E, van den Hoek P, Jacob C R, Jacobsen H, Jensen L, van Kessel G, Kootstra F, van Lenthe E, McCormack D A, Michalak A, Neugebauer J, Osinga V P, Patchkovskii S, Philipsen P H T, Post C, Pye C C, Ravenek W, Ros P, Schipper P R T, Schreckenbach G, Snijders J G, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski T A, van Wezenbeek E, Wiesenekker G, Wolff S K, Woo T K, Yakovlev A L, Ziegler T. ADF 2006. 01, SCM, Theoretical Chemistry. Amsterdam: Vrije Universiteit, 2006

    Google Scholar 

  38. Vosko S H, Wilk L, Nusair M C. Accurate spin-dependent electron liquid correlation energies forlocal spin density calculations: a critical analysis. Cana J Phys, 1980, 58(8): 1200–1211

    Article  CAS  Google Scholar 

  39. Becke A D. Density functional calculations of molecular bond energies. J Chem Phys, 1986, 84(8): 4524–4529

    Article  CAS  Google Scholar 

  40. Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33(12): 8822–8824

    Article  Google Scholar 

  41. van Lenthe E, Baerends E J, Snijders J G. Relativistic regular two-component Hamiltonians. J Chem Phys, 1993, 99(6): 4597–4610

    Article  Google Scholar 

  42. McGrady J E. [(Cp*RuCl)2(μ-Cl)2]: Bond-stretch or spin-state isomerism. Angew Chem-Int Edit, 2000, 39(17): 3077–3079

    Article  CAS  Google Scholar 

  43. López X, Fernández J A, Poblet J M, Paul J F, Kazansky L, Poblet J M. Are the solvent effects critical in the modeling of polyoxoanions. J Comput Chem, 2004, 25(12): 1542–1549

    Article  CAS  Google Scholar 

  44. Hay P J, Thibeault J C, Hoffmann R. Orbital interactions in metal dimer complexes. J Am Chem Soc, 1975, 97(17): 4884–4899

    Article  CAS  Google Scholar 

  45. Brown C A, Remar G J, Musselman R L, Solomon E I. Spectroscopic and electronic structure studies of met-hemerythrin model complexes: A description of the ferric-oxo dimer bond. Inorg Chem, 1995, 34(3): 688–717

    Article  CAS  Google Scholar 

  46. Rodriguez J H, McCusker J K. Density functional theory of spin-coupled models for diiron-oxo proteins: Effects of oxo and hydroxo bridging on geometry, electronic structure, and magnetism. J Chem Phys, 2002, 116(14): 6253–6270

    Article  CAS  Google Scholar 

  47. McGrady J E, Stranger R. Redox-induced changes in the geometry and electronic structure of di-μ-oxo-bridged manganese dimers. J Am Chem Soc, 1997, 119(36): 8512–8522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongMin Su.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20703008) and Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0714)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, L., Guan, W., Yan, L. et al. Density functional study of magnetic exchange of dinuclear manganese complexes with the heteropolymolyanion: [MnII 2(Xn+Mo9O33)2]2(n−10)− (X = PV, AsV, SeVI). Sci. China Ser. B-Chem. 51, 1174–1181 (2008). https://doi.org/10.1007/s11426-008-0123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0123-3

Keywords

Navigation