Skip to main content
Log in

A new method for quantitatively characterizing atmospheric oxidation capacity

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Based on atmospheric chemical kinetics, the rate constant of overall pseudo-first order oxidation removal of gaseous pollutants (K por,T ) is proposed to characterize the atmospheric oxidation capacity in troposphere. Being a quantitative parameter, K por,T can be used to address the issues related to atmospheric oxidation capacity. By applying this method, the regional oxidation capacity of the atmosphere in Pearl River Delta (PRD) is numerically simulated based on CBM-IV chemical mechanism. Results show the significant spatio-temporal variation of the atmospheric oxidation capacity in PRD. It is found that OH initiated oxidations, heterogeneous oxidation of SO2, and photolysis of aldehydes are the three most important oxidation processes influencing the atmospheric oxidation capacity in PRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson A M. The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes. Science, 1992, 256: 1157–1165

    Article  CAS  Google Scholar 

  2. Prinn G R. Ozone, hydroxyl radical and oxidative capacity. Treatise Geochem, 2003, 4: 1–19

    Article  Google Scholar 

  3. Muller J F, Vinckier C, Peeters J. Arijs E. Anthropogenic and biogenic influences on the oxidation capacity of the atmosphere. SPSD II-Part 2-Global Change, ecosystems and biodiversity. 2005

  4. Bloss W J, Evans M J, Lee J D, Sommariva R, Heard D E, Pilling M J. The oxidative capacity of the troposphere: Coupling of field measurements of OH and a global chemistry transport model. Faraday Discuss, 2005, 130: 425–436

    Article  CAS  Google Scholar 

  5. Levy H. Normal atmosphere: large radical and formaldehyde concentrations predicted. Science, 1971, 173: 141–143

    Article  CAS  Google Scholar 

  6. Zhang Y H, Shao K S, Tang X Y, Li J L. The study of urban photochemical smog pollution in China (in Chinese). Acta Scientiarum Naturalium, Universitat is Pekinensis, 1998, 34(2–3): 392–400

    CAS  Google Scholar 

  7. Wang S L, Zhang Y H, Zhong L J, Li J L, Yu Q. Interaction of urban air pollution among cities in Zhujiang Delta (in Chinese). Chin Environ Sci, 2005, 25(2): 133–137

    CAS  Google Scholar 

  8. Shao M, Tang X Y, Zhang Y H. Li W J. City clusters in China: Air and surface water pollution. Front Ecol Environ, 2006, 4(7): 353–361

    Article  Google Scholar 

  9. Zhu T. Air Pollution Complex at Urban and Regional Scale (Chemistry Progress Series—Environmental Chemistry). Beijing: Chemical Industry Press, 2005

    Google Scholar 

  10. Jacob D. Heterogeneous chemistry and tropospheric ozone. Atmos Environ, 2000, 34: 2132–2159

    Article  Google Scholar 

  11. Holland F, Aschmutat U, Hessling M, Hofzumahaus A, Ehhalt D H. Highly time resolved measurements of OH during the POPCORN using laser-induced fluorescence spectroscopy. J Atmos Chem, 1998, 31: 205–225

    Article  CAS  Google Scholar 

  12. Mauldin III R L, Frost G J, Chen G, Tanner D J, Prevot A S H, Davis D D, Eisele F L. OH measurements during the first aerosol characterization experiment (ACE 1): Observations and model comparisons. J Geophys Res, 1998, 103(D13): 16713–16729

    Article  CAS  Google Scholar 

  13. Pan X M, Chen S M, Hou H Q. Determination of OH free radical concentration in atmosphere (in Chinese). Shanghai Environ Sci, 1999, 18(2): 59–61

    CAS  Google Scholar 

  14. Ren X R, Shao K S, Tang S Y. Measurement of gas-phase OH using liquid phase scrubbing and high performance liquid chromatography (in Chinese). Environ Chem, 2001, 20(1): 81–85

    CAS  Google Scholar 

  15. Shao M, Ren X R, Wang H X, Zeng L M, Zhang Y H, Tang X Y. Quantitative relationship between production and removal of OH and HO2 radicals in urban atmosphere. Chin Sci Bull, 2004, 49(21): 2253–2258

    Article  CAS  Google Scholar 

  16. Platt U, Winer A M, Biermann H W, Atkinson R, Pitts Jr J N. Environ Sci Technol, 1984, 18: 365–369

    Article  CAS  Google Scholar 

  17. Prinn G R. The cleansing capacity of the atmosphere. Ann Rev Environ Resour, 2003, 28: 29–57

    Article  Google Scholar 

  18. Cheng Y L, Bai Y H, Li J L, Liu Z R. A numerical simulation study of contribution of varions anthropogenic sources to ozone formation in Pearl River Delta region. Acta Scientiae Circumstantiae, 2008, 28(4): 791–798

    CAS  Google Scholar 

  19. Gery M W, Whitten G Z, Killus J P. Development and testing of CBM-IV for urban and regional modeling. U S Environmental Protection Agency, EPA-600/3-88-012, 1988

  20. Joseph A L, Seinfeld J H. Analysis of the characteristics of complex chemical reaction mechanisms: application to photochemical smog chemistry. Environ Sci Tech, 1984, 18: 280–287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueSong Wang.

Additional information

Supported by the National Basic Research Program of China (Grant Nos: 2005CB422204, 2002CB410802, and 2002CB410801)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Wang, X., Liu, Z. et al. A new method for quantitatively characterizing atmospheric oxidation capacity. Sci. China Ser. B-Chem. 51, 1102–1109 (2008). https://doi.org/10.1007/s11426-008-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0119-z

Keywords

Navigation