Skip to main content
Log in

Could gingko foliage serve as a bio-monitor for organochlorine pesticides in air?

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The feasibility of gingko (Gingo Biloba) foliage as a passive bio-monitor for organochlorine pesticides in air was explored. The accumulation patterns of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and hexachlorobenzene (HCB) in gingko foliage were similar; the amounts of HCHs, DDTs and HCB increased with foliage growth in spring and decreased thereafter. This accumulation pattern is likely related to the growing process of the gingko foliage, which was observed for the first time in our work, giving a piece of evidence for the “bud burst effect” in plants. Compared with those in pine needles in 1980’s, the residual levels of HCHs and DDTs have declined obviously in Beijing, indicating that the ban on the production and use of organochlorine pesticides (OCPs) in our country is effective; however, the amount of HCB has increased, indicating great progress of chemical industry in Beijing. The analysis for the source of OCPs in the gingko foliage showed that the technical HCHs and DDTs were used largely in history, but were not used in recent years. A little lidane has been used and there was a new input of o,p′-DDT in recent years; dicofol usage may be the main source of o,p′-DDT. Concentrations of HCHs, DDTs and HCB in gingko foliages were similar to those in pine needles in the corresponding period and there is a strong positive correlation between the OCPs concentration data obtained from these two kinds of trees. It presents no difference in the accumulation style between these two kinds of trees. The level of OCPs in the gingko foliage reflects the pollution status of OCP in air. The result of this work shows that the gingko foliage can be used as a bio-monitor of OCPs in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hua X M, San Z J. The production and application of pesticides and factor analysis of their pollution in environment in China. Adv Environ Sci (in Chinese), 1996, 4(2): 33–45

    CAS  Google Scholar 

  2. Li V F, Cai D J, Singh A. Technical HCH use trends in China and their impact on the environment. Arch Environ Contam Toxicol, 1998, 35(4): 688–697

    Article  CAS  Google Scholar 

  3. Zhang G, Parker A, House A, Mai B X, Li X D, Kang Y H, Wang Z S. Sedimentary records of DDT and HCH in the Pearl river delta, south China. Environ Sci Technol, 2002, 36(17): 3671–3677

    Article  CAS  Google Scholar 

  4. Yuan D X, Yang D N, Wade T L, Qian Y R. Status of persistent organic pollutants in the sediment from several estuaries in China. Environ Pollut, 2001, 114(1): 101–111

    Article  CAS  Google Scholar 

  5. Wang H, Wang C X, Wu W Z, Mo H, Wang Z J. Persistent organic pollutants in water and surface sediments of Taihu lake, China and risk assessment. Chemosphere, 2003, 50(4): 557–562

    Article  CAS  Google Scholar 

  6. Ma M, Wang Z J, Anders S. Contamination of PCBs and organochlorinated pesticides in the sediment samples in Guanting reservior and Yongding river. Environ Chem (in Chinese), 2001, 20(3): 238–243

    CAS  Google Scholar 

  7. Xu S, Jiang X, Wang X, Tan Y, Sun C, Feng J, Wang L, Martens D, Gawlik B M. Persistent pollutants in sediments of the Yangtse river. Bull Environ Contam Toxicol, 2000, 64(2): 176–183

    Article  CAS  Google Scholar 

  8. Ma M, Feng Z, Guan C, Ma Y, Xu H, Li H. DDT, PAH and PCB in sediments from the intertibal zone of the Bohai sea and the Yellow sea. Mar Pollut Bull, 2001, 42(2): 132–136

    Article  CAS  Google Scholar 

  9. Wu W Z, Schramm K W, Henkelmann B, Xu Y, Yedile A, Kettrup A. PCDD/Fs, PCBs, HCHs and HCB in sediments and soils of Ya-Er lake area in China: Results on residual levels and correlation to the organic carbon and particle size. Chemosphere, 1997, 34(1): 191–202

    Article  CAS  Google Scholar 

  10. Dou W, Zhao Z X. Analysis of BCH, DDT bio-concentration in Baiyang-dian Lake’s aquatic food chain. Environ Sci (in Chinese), 1997, 18(5): 41–43

    CAS  Google Scholar 

  11. Ma L L, Chu S G, Xu X B. Organic contamination in the greenhouse soils from Beijing suburbs, China. J Environ Monit, 2003, 5(5): 786–790

    Article  CAS  Google Scholar 

  12. Shi S X, Zhou L, Shao D D, Huang Y R. Studies on residues of organo-chloride pesticides POPs in the soil in Beijing area. Res Environ Sci (in Chinese), 2007, 20(1): 24–29

    Google Scholar 

  13. Dou W, Zhao Z X. Contamination of DDT and BCH in water, sediments and fish (Carassius auratus) muscle from Baiyang-Dian Lake. Acta Sci Circumstantiae (in Chinese), 1998, 18(3): 308–312

    CAS  Google Scholar 

  14. Zhou J L, Maskaoui K, Qiu Y W, Hong H S, Wang Z D. Polychlorinated biphenyl congeners and organo-chlorine insecticides in the water column and sediments of Daya Bay, China. Environ Pollut, 2001, 113(3), 373–384

    Article  CAS  Google Scholar 

  15. Xu D D, Zhong W K, Deng L L, Chai Z F, Mao X Y. Regional distribution of organo-chlorinated pesticides in pine needles and its indication for socioeconomic development. Chemosphere, 2004, 54: 743–752

    Article  CAS  Google Scholar 

  16. Eriksson G, Jensen S, Kylin H, Strawchan W. The pine needle as a monitor of atmospheric pollution. Nature, 1989, 341(6237): 42–44

    Article  CAS  Google Scholar 

  17. Jensen S, Eriksson G, Kylin H, Strawchan W M J. Atmospheric pollution by persistent organic compounds: Monitoring with pine needles. Chemosphere, 1992, 24(2): 229–245

    Article  CAS  Google Scholar 

  18. Calamari D, Tremolada P, Guardo A D, Vighi M. Chlorinated hydrocarbons in pine needles in Europe: Fingerprint for the past and recent use. Environ Sci Technol, 1994, 28: 429–434

    Article  CAS  Google Scholar 

  19. Kylin H, Grimvall E, Ostman C. Environmental monitoring of PCBs using pine needles as passive samplers. Environ Sci Technol, 1994, 28: 1320–1324

    Article  CAS  Google Scholar 

  20. Juuti S, Norokorpi Y, Ruuskansen J. Trichloro-acetic acid (TCA) in pine needles caused by atmospheric emissions of kraft pulp mills. Chemosphere, 1995, 30(3): 439–448

    Article  CAS  Google Scholar 

  21. Gaggi C, Bacci E, Calamari D, Fanelli R. Chlorinated hydrocarbons in plant foliage: An indication of the tropospheric contamination level. Chemosphere, 1985, 14 (11,12): 1673–1686

    Article  Google Scholar 

  22. Zhu X H, Dai T Y, Meng W, Wang W, Yu Y J, Wu D N. The pollution character of HCHs and DDTs in pine needles in Changping Beijing. China Environ Sci, 2008, 28(7): 582–587

    CAS  Google Scholar 

  23. Wang X P, Yao T D, Cong Z Y, Yan X L, Kang S C, Zhang Y. Gradient distribution of persistent organic contaminants along northern slope of central-Himalayas. Chin Sci Totall Environ, 2006, 372(1): 193–202

    Article  CAS  Google Scholar 

  24. Xu D D, Zhong W K, Deng L L, Chai Z F, Mao X Y. Studies on the organic chlorine pesticide HCH and DDT in pine needles. China Environ Sci (in Chinese), 2002, 22(6): 481–484

    CAS  Google Scholar 

  25. Xu D D, Zhong W K, Deng L L, Chai Z F, Mao X Y. Levels of extractable organo-halogens in pine needles in China. Environ Sci Technol, 2003, 37(1): 1–6

    Article  CAS  Google Scholar 

  26. Xu D D, Deng L L, Chai Z.F., Mao X Y. Organo-halogenated compounds in pine needles from Beijing city, China. Chemosphere, 2004, 57: 1343–1353

    Article  CAS  Google Scholar 

  27. Hung H, Thomas G O, Jones K C, Mackay D. Grass-air exchange of polychlorinated biphenyls. Environ Sci Technol, 2001, 35: 4066–4073

    Article  CAS  Google Scholar 

  28. Thomas G O, Smith K E C, Sweetman A J, Jones K C. Further studies of the air-pasture transfer of PCBs. Environ Pollut, 1998, 102(1): 119–128

    Article  CAS  Google Scholar 

  29. Smith K E C, Thomas G O, Jones K C. Seasonal and species differences in the air-pasture transfer of PAHs. Environ Sci Technol, 2001, 35: 2156–2165

    Article  CAS  Google Scholar 

  30. Simonich S L, Hites R A. Vegetation-atmosphere partitioning of PAHs. Environ Sci Technol, 1994, 28(5): 939–943

    Article  CAS  Google Scholar 

  31. Simonich S L, Hites R A. Organic pollutant accumulation in vegetation. Environ Sci Technol, 1995, 29: 2905–2914

    Article  CAS  Google Scholar 

  32. Thomas G, Sweetman A J, Ockenden W A, Mackay D. Air-pasture transfer of PCBs. Environ Sci Technol, 1998, 32: 936–942

    Article  CAS  Google Scholar 

  33. Gouin T, Thomas G O, Cousins I, Barber J, Mackay D, Jones K C. Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls. Environ Sci Technol, 2002, 36: 1426–1434

    Article  CAS  Google Scholar 

  34. Wania F, McLachlan M S. Estimating the influence of forest on the overall fate of semi-volatile organic compounds using a multimedia fate model. Environ Sci Technol, 2001, 35: 582–590

    Article  CAS  Google Scholar 

  35. Oehme M, Mano, S. The long rang transport of organic pollutants to the arctic. Fresen Z Anal Chem, 1984, 319: 141–146

    Article  CAS  Google Scholar 

  36. Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M. Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environ Sci Technol, 1991, 25(8): 1489–1495

    Article  CAS  Google Scholar 

  37. Xu S F, Jiang X, Dong Y Y, Sun C, Feng J F, Wang L S, Martens D, Gawlik B M. Polychlorinated organic compounds in Yangtse River sediments. Chemosphere, 2000, 41(12): 1897–1903

    Article  CAS  Google Scholar 

  38. Xu S F, Jiang X, Feng J F, Dong Y Y, Sun C, Wang L S. Gas chromatographic method for the determination of organo-chlorine pesticides in suspended solids and sediments of the Yangtz River. Acta Sci Circum (in Chinese), 2000, 20(4): 494–498

    CAS  Google Scholar 

  39. Metcalf R L. Organic Insecticides, Their Chemistry and Mode of Action. New York: Interscience, 1995

    Google Scholar 

  40. Cooker B K, Stringer A. Distribution and breakdown of DDT in orchard soil. Pestic Sci, 1982, 13: 545–551

    Article  Google Scholar 

  41. Raport R A, Eisenreich S J. Atmospheric deposition of toxaphene to eastern North American derived from peat accumulation. Atmos Environ, 1986, 20: 2367–2379

    Article  Google Scholar 

  42. Hung H, Halsall C J, Blanchard P, Li H H, Fellin P, Sterm G, Rosenberg B. Temporal trends of organo-chlorine pesticides in the Canadian Arctic atmosphere. Environ Sci Technol, 2002, 36(5): 862–868

    Article  CAS  Google Scholar 

  43. Huang X Z, Ji Y, Ye J M, Shan W L, Jian Q. Analysis of dicofol technical material and its impurities with GC/MS. Pestic Sci and Admin (in Chinese), 2000, 21(5): 9–12

    CAS  Google Scholar 

  44. Qiu X H, Zhu T, Li J, Pan H S, Li Q L, Miao G F, Gong J C. Organochlorine pesticides in the air around the Taihu Lake, China. Environ Sci Technol, 2004, 38(5): 1368–1374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianYou Dai.

Additional information

Supported by the State Key Development Program for Basic Research of China (Grant No. 2003CB415003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, T., Zhu, X., Meng, W. et al. Could gingko foliage serve as a bio-monitor for organochlorine pesticides in air?. Sci. China Ser. B-Chem. 51, 1093–1101 (2008). https://doi.org/10.1007/s11426-008-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0096-2

Keywords

Navigation