Skip to main content
Log in

Minimal silting modules and ring extensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angeleri Hügel L. Infinite dimensional tilting theory. In: Advances in Representation Theory of Algebras. EMS Series of Congress Reports. Zürich: Eur Math Soc, 2013, 1–37

    MATH  Google Scholar 

  2. Angeleri Hügel L, Hrbek M. Silting modules over commutative rings. Int Math Res Not IMRN, 2017, 2017: 4131–4151

    MathSciNet  MATH  Google Scholar 

  3. Angeleri Hügel L, Hrbek M. Parametrizing torsion pairs in derived categories. Represent Theory, 2021, 25: 679–731

    Article  MathSciNet  Google Scholar 

  4. Angeleri Hügel L, Marks F, Šťovíček J, et al. Flat ring epimorphisms and universal localizations of commutative rings. Q J Math, 2020, 4: 1489–1520

    Article  MathSciNet  Google Scholar 

  5. Angeleri Hügel L, Marks F, Vitória J. Silting modules. Int Math Res Not IMRN, 2016, 2016: 1251–1284

    Article  MathSciNet  Google Scholar 

  6. Angeleri Hügel L, Marks F, Vitória J. Silting modules and ring epimorphisms. Adv Math, 2016, 303: 1044–1076

    Article  MathSciNet  Google Scholar 

  7. Angeleri Hügel L, Marks F, Vitória J. A characterisation of τ-tilting finite algebras. In: Contemporary Mathematics, vol. 730. Providence: Amer Math Soc, 2019: 75–89

    MATH  Google Scholar 

  8. Angeleri Hügel L, Sánchez J. Tilting modules arising from ring epimorphisms. Algebr Represent Theory, 2011, 14: 217–246

    Article  MathSciNet  Google Scholar 

  9. Angeleri Hügel L, Sánchez J. Tilting modules over tame hereditary algebras. J Reine Angew Math, 2013, 682: 1–48

    Article  MathSciNet  Google Scholar 

  10. Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge: Cambridge University Press, 1994

    MATH  Google Scholar 

  11. Bergman G, Dicks W. Universal derivations and universal ring constructions. Pacific J Math, 1978, 79: 293–337

    Article  MathSciNet  Google Scholar 

  12. Bongartz K. Tilted algebras. In: Representations of Algebras. Lecture Notes in Mathematics, vol. 903. Berlin: Springer-Verlag, 1981, 26–38

    Chapter  Google Scholar 

  13. Breaz S. The ascent-descent property for 2-term silting complexes. Publ Mat, 2020, 64: 543–562

    Article  MathSciNet  Google Scholar 

  14. Breaz S, Pop F. Cosilting modules. Algebr Represent Theory, 2017, 20: 1305–1321

    Article  MathSciNet  Google Scholar 

  15. Buan A B, Krause H. Cotilting modules over tame hereditary algebras. Pacific J Math, 2003, 211: 41–59

    Article  MathSciNet  Google Scholar 

  16. Chen H X, Xi C C. Good tilting modules and recollements of derived module categories. Proc Lond Math Soc (3), 2012, 104: 959–996

    Article  MathSciNet  Google Scholar 

  17. Gabriel P, de la Peña J A. Quotients of representation-finite algebras. Comm Algebra, 1987, 15: 279–307

    Article  MathSciNet  Google Scholar 

  18. Geigle W, Lenzing H. Perpendicular categories with applications to representations and sheaves. J Algebra, 1991, 144: 273–343

    Article  MathSciNet  Google Scholar 

  19. Göbel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. De Gruyter Expositions in Mathematics, vol. 41. Berlin: De Gruyter, 2006

    Book  Google Scholar 

  20. Krause H, Šťovíček J. The telescope conjecture for hereditary rings via Ext-orthogonal pairs. Adv Math, 2010, 225: 2341–2364

    Article  MathSciNet  Google Scholar 

  21. Schofield A H. Representation of Rings over Skew Fields. London Mathematical Society Lecture Note Series, vol. 92. Cambridge: Cambridge University Press, 1985

    Book  Google Scholar 

  22. Schofield A H. Universal localisations of hereditary rings. arXiv:0708.0257, 2007

  23. Silver L. Noncommutative localizations and applications. J Algebra, 1967, 7: 44–76

    Article  MathSciNet  Google Scholar 

  24. Wei J Q. Semi-tilting complexes. Israel J Math, 2013, 194: 871–893

    Article  MathSciNet  Google Scholar 

  25. Zhang P Y, Wei J Q. Cosilting complexes and AIR-cotilting modules. J Algebra, 2017, 491: 1–31

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by Fondazione Cariverona, Program “Ricerca Scientifica di Eccellenza 2018” (Project “Reducing Complexity in Algebra, Logic, Combinatorics — REDCOM”). The second author was supported by China Scholarship Council (Grant No. 201906860022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hügel, L.A., Cao, W. Minimal silting modules and ring extensions. Sci. China Math. 65, 1775–1794 (2022). https://doi.org/10.1007/s11425-020-1898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1898-6

Keywords

MSC(2020)

Navigation