Skip to main content
Log in

Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the nonhomogeneous semilinear fractional Schrödinger equation with critical growth

$$\left\{ {\begin{array}{*{20}{c}} {{{( - \Delta )}^s}u + u = {u^{2_s^* - 1}} + \lambda (f(x,u)) + h(x)),}&{x \in {\mathbb{R}^N},} \\ {u \in {H^s}({\mathbb{R}^N}),\;\;\;u(x) > 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}&{x \in {\mathbb{R}^N},} \end{array}} \right.$$

where s ∈ (0, 1), N > 4s, and λ > 0 is a parameter, \(2_s^* = {{2N} \over {N - 2s}}\) is the fractional critical Sobolev exponent, f and h are some given functions. We show that there exists 0 < λ* < +∞ such that the problem has exactly two positive solutions if λ ∈ (0, λ*), no positive solutions for λ > λ*, a unique solution (λ*,uλ*) if λ = λ*, which shows that (λ*,uλ*) is a turning point in HS(ℝN) for the problem. Our proofs are based on the variational methods and the principle of concentration-compactness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi S, Tanaka K. Existence of positive solutions for a class of nonhomogeneous elliptic equations in ℝN. Nonlinear Anal, 2002, 48: 685–705

    MathSciNet  MATH  Google Scholar 

  2. Albert G, Bellettini G. A nonlocal anisotropic model for phase transitions I: The optimal profile problem. Math Ann, 1998, 310: 527–560

    MathSciNet  Google Scholar 

  3. Ambrosetti A, Struwe M. A note on the problem −Δu = λu + uu2*−2. Manuscripta Math, 1986, 54: 373–379

    MathSciNet  MATH  Google Scholar 

  4. Bahri A, Lions P L. On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann Inst H Poincaré Anal Non Linéaire, 1997, 14: 365–413

    MathSciNet  MATH  Google Scholar 

  5. Barris B, Colorado E, Servadei R, et al. A critical fractional equation with concave-convex power nonlinearities. Ann Inst H Poincaré Anal Non Lineaire, 2015, 32: 875–900

    MathSciNet  MATH  Google Scholar 

  6. Brändle C, Colorado E, de Pablo A, et al. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2013, 143: 39–71

    MathSciNet  MATH  Google Scholar 

  7. Brezis H, Kato T. Remarks on the Schrödinger operator with singular complex potentials. J Math Pures Appl (9), 1979, 58: 137–151

    MathSciNet  MATH  Google Scholar 

  8. Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477

    MathSciNet  MATH  Google Scholar 

  9. Bucur C, Valdinoci E. Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Cham: Springer, 2016

    Google Scholar 

  10. Cabre X, Sire Y. Nonlinear equations for fractional Laplacian I: Regularity, maximum principles, and Hamiltonian estimates. Ann Inst H Poincaré Anal Non Linéaire, 2014, 31: 23–53

    MathSciNet  MATH  Google Scholar 

  11. Cabre X, Sire Y. Nonlinear equations for fractional Laplacian II: Existence, uniqueness, and qualitative properties of solutions. Trans Amer Math Soc, 2015, 367: 911–941

    MathSciNet  MATH  Google Scholar 

  12. Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32: 1245–1260

    MathSciNet  MATH  Google Scholar 

  13. Cao D, Zhou H. On the existence of multiple solutions of nonhomogeneous elliptic equations involving critical Sobolev exponents. Z Angew Math Phys, 1996, 47: 89–96

    MathSciNet  MATH  Google Scholar 

  14. Cao D, Zhou H. Multiple positive solutions of nonhomogeneous semilinear elliptic equations in ℝN. Proc Roy Soc Edinburgh Sect A, 1996, 126: 443–463

    MathSciNet  MATH  Google Scholar 

  15. Cerami G, Fortunato D, Struwe M. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 341–350

    MathSciNet  MATH  Google Scholar 

  16. Chang X, Wang Z Q. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity, 2013, 26: 479–494

    MathSciNet  MATH  Google Scholar 

  17. Chen K, Peng C. Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear elliptic problems. J Differential Equations, 2007, 240: 58–91

    MathSciNet  MATH  Google Scholar 

  18. Colorado E, de Pablo A, Sánchez U. Perturbations of a critical fractional equation. Pacific J Math, 2014, 271: 65–85

    MathSciNet  MATH  Google Scholar 

  19. Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch Ration Mech Anal, 1973, 52: 161–180

    MathSciNet  MATH  Google Scholar 

  20. Deng Y. Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems involving critical exponents. Comm Partial Differential Equations, 1992, 17: 33–53

    MathSciNet  MATH  Google Scholar 

  21. Deng Y, Li Y. Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent. J Differential Equations, 1996, 130: 179–200

    MathSciNet  MATH  Google Scholar 

  22. Deng Y, Peng S, Wang L. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete Contin Dyn Syst, 2012, 32: 795–826

    MathSciNet  MATH  Google Scholar 

  23. Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573

    MathSciNet  MATH  Google Scholar 

  24. Dipierro S, Medina M, Peral I, et al. Bifurcation results for a fractional elliptic equation with critical exponent in ℝn. Manuscripta Math, 2017, 153: 183–230

    MathSciNet  MATH  Google Scholar 

  25. Dipierro S, Medina M, Valdinoci E. Fractional Elliptic Problems with Critical Growth in the Whole of ℝn. Pisa: Edizioni della Normale, 2017

    MATH  Google Scholar 

  26. Felmer P, Quaas A, Tan J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237–1262

    MathSciNet  MATH  Google Scholar 

  27. Fiscella A, Bisci G M, Servadei R. Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems. Bull Sci Math, 2016, 140: 14–35

    MathSciNet  MATH  Google Scholar 

  28. He X, Zou W. Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc Var Partial Differential Equations, 2016, 55: 91

    MATH  Google Scholar 

  29. Jeanjean L. Two positive solutions for a class of nonhomogeneous elliptic equations. Differential Integral Equations, 1997, 10: 609–624

    MathSciNet  MATH  Google Scholar 

  30. Laskin N. Fractional quantum mechanics and Levy path integrals. Phys Lett A, 2000, 268: 298–305

    MathSciNet  MATH  Google Scholar 

  31. Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66: 056108–056114

    MathSciNet  Google Scholar 

  32. Li B, Fu Y. Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear fractional Laplacian problems. Calc Var Partial Differential Equations, 2017, 56: 165

    MathSciNet  MATH  Google Scholar 

  33. Lions P L. The concentration-compactness principle in the calculus of variations: The locally compact cases, part I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109–145

    MathSciNet  MATH  Google Scholar 

  34. Lions P L. The concentration-compactness principle in the calculus of variations: The locally compact cases, part II. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223–283

    MathSciNet  MATH  Google Scholar 

  35. Ros-Oton X, Serra J. The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. J Math Pures Appl (9), 2014, 101: 275–302

    MathSciNet  MATH  Google Scholar 

  36. Ros-Oton X, Serra J. Nonexistence results for nonlocal equations with critical and supercritical nonlinearities. Comm Partial Differential Equations, 2015, 40: 115–133

    MathSciNet  MATH  Google Scholar 

  37. Royden H L, Fitzpatrick P M. Real Analysis, 4th ed. London: Pearson Education, 2010

    MATH  Google Scholar 

  38. Servadei R, Valdinoci E. Variational methods for non-local operators of elliptic type. Discrete Contin Dyn Syst, 2013, 33: 2105–2137

    MathSciNet  MATH  Google Scholar 

  39. Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367: 67–102

    MathSciNet  MATH  Google Scholar 

  40. Shang X, Zhang J. On fractional Schrodinger equation in ℝN with critical growth. J Math Phys, 2013, 54: 121502

    MathSciNet  MATH  Google Scholar 

  41. Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60: 67–112

    MathSciNet  MATH  Google Scholar 

  42. Sire Y, Valdinoci E. Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result. J Funct Anal, 2009, 256: 1842–1864

    MathSciNet  MATH  Google Scholar 

  43. Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970

    MATH  Google Scholar 

  44. Struwe M. Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Berlin: Springer-Verlag, 1990

    MATH  Google Scholar 

  45. Stuart C A. Bifurcation in Lp(ℝN) for a semilinear elliptic equation. Proc Lond Math Soc (3), 1988, 57: 511–541

    Google Scholar 

  46. Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Berlin: Deutscher Verlagder Wissenschaften, 1978

    MATH  Google Scholar 

  47. Xiang M Q, Zhang B L, Qiu H. Existence of solutions for a critical fractional Kirchhoff type problem in ℝN. Sci China Math, 2017, 60: 1647–1660

    MathSciNet  MATH  Google Scholar 

  48. Zhang X, Zhang B, Xiang M. Ground states for fractional Schrödinger equations involving a critical nonlinearity. Adv Nonlinear Anal, 2016, 5: 293–314

    MathSciNet  MATH  Google Scholar 

  49. Zhu X, Cao D. The concentration-compactness principle in nonlinear elliptic equations. Acta Math Sci Ser B Engl Ed, 1989, 9: 307–328

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11771468 and 11971027). The second author was supported by National Natural Science Foundation of China (Grant Nos. 11771234 and 11926323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zou, W. Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth. Sci. China Math. 63, 1571–1612 (2020). https://doi.org/10.1007/s11425-020-1692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1692-1

Keywords

MSC(2010)

Navigation