Skip to main content
Log in

Regionally proximal relation of order d along arithmetic progressions and nilsystems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The regionally proximal relation of order d along arithmetic progressions, namely AP[d] for d ∈ ℕ, is introduced and investigated. It turns out that if (X, T) is a topological dynamical system with AP[d] = Δ, then each ergodic measure of (X, T) is isomorphic to a d-step pro-nilsystem, and thus (X, T) has zero entropy. Moreover, it is shown that if (X, T) is a strictly ergodic distal system with the property that the maximal topological and measurable d-step pro-nilsystems are isomorphic, then AP[d] = RP[d] for each d ∈ ℕ. It follows that for a minimal ∞-pro-nilsystem, AP[d] = RP[d] for each d ∈ ℕ. An example which is a strictly ergodic distal system with discrete spectrum whose maximal equicontinuous factor is not isomorphic to the Kronecker factor is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander J. Minimal Flows and Their Extensions. North-Holland Mathematics Studies, vol. 153. Amsterdam: North-Holland, 1988

    MATH  Google Scholar 

  2. Blanchard F. Fully positive topological entropy and topological mixing: Symbolic dynamics and its applications. Contemp Math, 1992, 135: 95–105

    Article  Google Scholar 

  3. Blanchard F. A disjointness theorem involving topological entropy. Bull Soc Math France, 1993, 121: 465–478

    Article  MathSciNet  Google Scholar 

  4. Blanchard F, Host B, Ruette S. Asymptotic pairs in positive-entropy systems. Ergodic Theory Dynam Systems, 2002, 22: 671–686

    Article  MathSciNet  Google Scholar 

  5. Bronstein I. Extensions of Minimal Transformation Groups. Netherlands: Springer, 1979

    Book  Google Scholar 

  6. Cai F, Shao S. Topological characteristic factors along cubes of minimal systems. Discrete Contin Dyn Syst, 2019, 39: 5301–5317

    Article  MathSciNet  Google Scholar 

  7. de Vries J. Elements of Topological Dynamics. Dordrecht: Kluwer Academic Publishers, 1993

    Book  Google Scholar 

  8. Dong P, Donoso S, Maass S, et al. Infinite-step nilsystems, independence and complexity. Ergodic Theory Dynam Systems, 2013, 33: 118–143

    Article  MathSciNet  Google Scholar 

  9. Ellis R, Glasner S, Shapiro L. Proximal-isometric (PJ) flows. Adv Math, 1975, 17: 213–260

    Article  Google Scholar 

  10. Ellis R, Gottschalk W. Homomorphisms of transformation groups. Trans Amer Math Soc, 1960, 94: 258–271

    Article  MathSciNet  Google Scholar 

  11. Ellis R, Keynes H. A characterization of the equicontinuous structure relation. Trans Amer Math Soc, 1971, 161: 171–183

    Article  MathSciNet  Google Scholar 

  12. Furstenberg H. Strict ergodicity and transformation of the torus. Amer J Math, 1961, 83: 573–601

    Article  MathSciNet  Google Scholar 

  13. Furstenberg H. The structure of distal flows. Amer J Math, 1963, 85: 477–515

    Article  MathSciNet  Google Scholar 

  14. Furstenberg H. Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions. J Anal Math, 1977, 31: 204–256

    Article  MathSciNet  Google Scholar 

  15. Furstenberg H. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton: Princeton University Press, 1981

    Book  Google Scholar 

  16. Furstenber H, Weiss B. A mean ergodic theorem for \({1 \over N}\sum\nolimits_{n = 1}^N {f\left({{T^n}x} \right)g\left({T{n^2}x} \right)} \). In: Convergence in Ergodic Theory and Probability. Ohio State University Mathematical Research Institute Publications, vol. 5. Berlin: de Gruyter, 1996, 193–227

    Google Scholar 

  17. Glasner E. Topological ergodic decompositions and applications to products of powers of a minimal transformation. J Anal Math, 1994, 64: 241–262

    Article  MathSciNet  Google Scholar 

  18. Glasner E, Gutman Y, Ye X. Higher order regionally proximal equivalence relations for general minimal group actions. Adv Math, 2018, 333: 1004–1041

    Article  MathSciNet  Google Scholar 

  19. Glasner E, Weiss B. Quasi-factors of zero-entropy systems. J Amer Math Soc, 1995, 8: 665–686

    MathSciNet  MATH  Google Scholar 

  20. Glasner S. Relatively invariant measures. Pacific J Math, 1975, 58: 393–410

    Article  MathSciNet  Google Scholar 

  21. Host B, Kra B. Nonconventional ergodic averages and nilmanifolds. Ann of Math (2), 2005, 161: 397–488

    Article  MathSciNet  Google Scholar 

  22. Host B, Kra B. Nilpotent Structures in Ergodic Theory. Mathematical Surveys and Monographs, vol. 236. Providence: Amer Math Soc, 2018

    Book  Google Scholar 

  23. Host B, Kra B, Maass A. Nilsequences and a structure theorem for topological dynamical systems. Adv Math, 2010, 224: 103–129

    Article  MathSciNet  Google Scholar 

  24. Host B, Kra B, Maass A. Variations on topological recurrence. Monatsh Math, 2016, 179: 57–89

    Article  MathSciNet  Google Scholar 

  25. Huang W, Li H, Ye X. Family-independence for topological and measurable dynamics. Trans Amer Math Soc, 2012, 364: 5209–5242

    Article  MathSciNet  Google Scholar 

  26. Huang W, Shao S, Ye X. Nil Bohr-sets and almost automorphy of higher order. Mem Amer Math Soc, 2016, 241: 1143

    MathSciNet  MATH  Google Scholar 

  27. Huang W, Ye X. An explicit scattering, non-weakly mixing example and weak disjointness. Nonlinearity, 2002, 15: 849–862

    Article  MathSciNet  Google Scholar 

  28. Huang W, Ye X. A local variational relation and applications. Israel J Math, 2006, 151: 237–280

    Article  MathSciNet  Google Scholar 

  29. Kerr D, Li H. Independence in topological and C*-dynamics. Math Ann, 2007, 338: 869–926

    Article  MathSciNet  Google Scholar 

  30. Lehrer E. Topological mixing and uniquely ergodic systems. Israel J Math, 1987, 57: 239–255

    Article  MathSciNet  Google Scholar 

  31. McMahon D. Relativized weak disjointness and relatively invariant measures. Trans Amer Math Soc, 1978, 236: 225–237

    Article  MathSciNet  Google Scholar 

  32. Qiao Y X. Topological complexity, minimality and systems of order two on torus. Sci China Math, 2016, 59: 503–514

    Article  MathSciNet  Google Scholar 

  33. Shao S, Ye X. Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence. Adv Math, 2012, 231: 1786–1817

    Article  MathSciNet  Google Scholar 

  34. Veech W. The equicontinuous structure relation for minimal Abelian transformation groups. Amer J Math, 1968, 90: 723–732

    Article  MathSciNet  Google Scholar 

  35. Ziegler T. Universal characteristic factors and Furstenberg averages. J Amer Math Soc, 2007, 20: 53–97

    Article  MathSciNet  Google Scholar 

  36. Zygmund A. Trigonormetric Series, 2nd ed. Cambridge: Cambridge University Press, 1959

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11431012,11971455,11571335 and 11371339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Ye.

Additional information

Dedicated to Professor Shantao Liao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glasner, E., Huang, W., Shao, S. et al. Regionally proximal relation of order d along arithmetic progressions and nilsystems. Sci. China Math. 63, 1757–1776 (2020). https://doi.org/10.1007/s11425-019-1607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1607-5

Keywords

MSC(2010)

Navigation