Skip to main content
Log in

Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we show that the coupled modified KdV equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials, convergence acceleration algorithms and Laurent property are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M, Forrester P J, Nagao T, et al. Classical skew orthogonal polynomials and random matrices. J Stat Phys, 2000, 99: 141–170

    Article  MathSciNet  MATH  Google Scholar 

  2. Beals R, Sattinger D H, Szmigielski J. Multipeakons and the classical moment problem. Adv Math, 2000, 154: 229–257

    Article  MathSciNet  MATH  Google Scholar 

  3. Berezanski Y M. The integration of semi-infinite Toda chain by means of inverse spectral problem. Rep Math Phys, 1986, 24: 21–47

    Article  MathSciNet  Google Scholar 

  4. Bertola M, Gekhtman M, Szmigielski J. Peakons and Cauchy biorthogonal polynomials. ArXiv:0711.4082, 2007

    MATH  Google Scholar 

  5. Bertola M, Gekhtman M, Szmigielski J. The Cauchy two-matrix model. Comm Math Phys, 2009, 287: 983–1014

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertola M, Gekhtman M, Szmigielski J. Cauchy biorthogonal polynomials. J Approx Theory, 2010, 162: 832–867

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezinski C, He Y, Hu X B, et al. Multistep ε-algorithm, shanks’ transformation, and Lotka-Volterra system by Hirota’s method. Math Comp, 2012, 81: 1527–1549

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezinski C, Redivo-Zaglia M. Extrapolation Methods. Amsterdam: North-Holland, 1991

    MATH  Google Scholar 

  9. Caieniello E R. Combinatorics and Renormalization in Quantum Field Theory. Mass-London-Amsterdam: Benjamin, 1973

    Google Scholar 

  10. Carroll G, Speyer D. The cube recurrence. Electron J Combin, 2004, 11: 1–31

    MathSciNet  MATH  Google Scholar 

  11. Chang X K, Chen X M, Hu X B, et al. About several classes of bi-orthogonal polynomials and discrete integrable systems. J Phys A, 2015, 48: 015204

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang X K, Hu X B, Xin G. Hankel determinant solutions to several discrete integrable system and the Laurent property. SIAM J Discrete Math, 2015, 29: 667–682

    Article  MathSciNet  MATH  Google Scholar 

  13. Deift P. Integrable systems and combinatorial theory. Notices Amer Math Soc, 2000, 47: 631–640

    MathSciNet  MATH  Google Scholar 

  14. Di Francesco P. Integrable combinatorics. In: XVIIth International Congress on Mathematical Physics. Hackensack: World Scientific, 2014, 29–51

    Google Scholar 

  15. Di Francesco P, Kedem R. Q-systems, heaps, paths and cluster positivity. Comm Math Phys, 2010, 293: 727–802

    Article  MathSciNet  MATH  Google Scholar 

  16. Dyson F J. A class of matrix ensembles. J Math Phys, 1972, 13: 90–97

    Article  MathSciNet  MATH  Google Scholar 

  17. Elaydi S. An Introduction to Difference Equations. New York: Springer, 2005

    MATH  Google Scholar 

  18. Fomin S, Zelevinsky A. The Laurent phenomenon. Adv in Appl Math, 2002, 28: 119–144

    Article  MathSciNet  MATH  Google Scholar 

  19. Fordy A P, Hone A N W. Discrete integrable systems and poisson algebras from cluster maps. Comm Math Phys, 2014, 325: 527–584

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghosh S. Generalized Christoffel-Darboux formula for skew-orthogonal polynomials and random matrix theory. J Phys A, 2006, 39: 8775–8782

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghosh S. Skew-orthogonal polynomials, differential systems and random matrix theory. J Phys A, 2007, 40: 711–740

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghosh S. Generalized Christoffel-Darboux formula for classical skew-orthogoanl polynomials. J Phys A, 2008, 41: 435204

    Article  MathSciNet  MATH  Google Scholar 

  23. He Y, Hu X B, Sun J Q, et al. Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J Sci Comput, 2011, 33: 1234–1245

    Article  MathSciNet  MATH  Google Scholar 

  24. Hirota R. “Molecule solutions” of coupled modified KdV equations. J Phys Soc Japan, 1997, 66: 2530–2532

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirota R. The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  26. Hone A N W, Swart C. Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences. Math Proc Cambridge Philos Soc, 2008, 145: 65–86

    Article  MathSciNet  MATH  Google Scholar 

  27. Ismail M. Classical and Quantum Orthogonal Polynomials in One Variable. New York: Cambridge University Press, 2009

    MATH  Google Scholar 

  28. Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersing media. Sov Phys Dokl, 1970, 15: 539–541

    MATH  Google Scholar 

  29. Kodama Y. KP solitons, total positivity, and cluster algebras. Proc Natl Acad Sci USA, 2011, 108: 8984–8989

    Article  MathSciNet  MATH  Google Scholar 

  30. Kodama Y, Pierce V U. Geometry of the Pfaff lattice. Int Math Res Not IMRN, 2007, https://doi.org/10.1093/ imrn/rnm120

    Google Scholar 

  31. Korteweg D J, De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag, 1895, 39: 422–443

    Article  MathSciNet  MATH  Google Scholar 

  32. Miki H, Goda H, Tsujimoto S. Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems. SIGMA Symmetry Integrability Geom Methods Appl, 2012, 8: 1–14

    MathSciNet  MATH  Google Scholar 

  33. Nagai A, Satsuma J. Discrete soliton equations and convergence acceleration algorithms. Phys Lett A, 1995, 209: 305–312

    Article  MathSciNet  MATH  Google Scholar 

  34. Nagai A, Tokihiro T, Satsuma J. The Toda molecule equation and the "-algorithm. Math Comp, 1998, 67: 1565–1575

    Article  MathSciNet  MATH  Google Scholar 

  35. Nakamura Y. Applied Integrable Systems (in Japanese). Tokyo: Shokabo, 2000

    Google Scholar 

  36. Nakamura Y, Zhedanov A. Special solutions of the Toda chain and combinatorial numbers. J Phys A, 2004, 37: 5849–5862

    Article  MathSciNet  MATH  Google Scholar 

  37. Papageorgiou V, Grammaticos B, Ramani A. Integrable lattices and convergence acceleration algorithms. Phys Lett A, 1993, 179: 111–115

    Article  MathSciNet  MATH  Google Scholar 

  38. Papageorgiou V, Grammaticos B, Ramani A. Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm. Lett Math Phys, 1995, 34: 91–101

    Article  MathSciNet  MATH  Google Scholar 

  39. Peherstorfer F, Spiridonov V P, Zhedanov A S. Toda chain, Stieltjes function, and orthogonal polynomials. Theoret Math Phys, 2007, 151: 505–528

    Article  MathSciNet  MATH  Google Scholar 

  40. Pierce V U. A Riemann-Hilbert problem for skew-orthogonal polynomials. J Comput Appl Math, 2008, 215: 230–241

    Article  MathSciNet  MATH  Google Scholar 

  41. Speyer D E. Perfect matchings and the octahedron recurrence. J Algebraic Combin, 2007, 25: 309–348

    Article  MathSciNet  MATH  Google Scholar 

  42. Spiridonov V P, Tsujimoto S, Zhedanov A S. Integrable discrete time chains for the Frobenius-Stickelberger-Thiele polynomials. Comm Math Phys, 2007, 272: 139–165

    Article  MathSciNet  MATH  Google Scholar 

  43. Sun J Q, Chang X K, He Y, et al. An extended multistep shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. Numer Math, 2013, 125: 785–809

    Article  MathSciNet  MATH  Google Scholar 

  44. Tsujimoto S, Kondo K. The molecule solutions of discrete integrable systems and orthogonal polynomials (in Japanese). RIMS Kôkyûroku Bessatsu, 2000, 1170: 1–8

    MATH  Google Scholar 

  45. Tsujimoto S, Nakamura Y, Iwasaki M. The discrete Lotka-Volterra system computes singular values. Inverse Problems, 2001, 17: 53–58

    Article  MathSciNet  MATH  Google Scholar 

  46. Vein P, Dale R. Determinants and Their Applications in Methematical Physics. New York: Springer, 1999

    MATH  Google Scholar 

  47. Wynn P. On a device for computing the e m (S n ) transformation. Math Tables Aids Comput, 1956, 10: 91–96

    Article  MathSciNet  MATH  Google Scholar 

  48. Wynn P. On a Procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc Camb Phil Soc, 1956, 52: 663–671

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11331008, 11201469, 11571358 and 11601237), the China Postdoctoral Science Foundation Funded Project (Grant Nos. 2012M510186 and 2013T60761), and the Hong Kong Research Grant Council (Grant No. GRF HKBU 202512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., He, Y., Hu, X. et al. Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property. Sci. China Math. 61, 1063–1078 (2018). https://doi.org/10.1007/s11425-016-9072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9072-0

Keywords

MSC(2010)

Navigation