Skip to main content
Log in

Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara’s 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h 1+min{α,1}) is established for both the displacement approximation in H 1-norm and the stress approximation in L 2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold D N, Boffi D, Falk R. Approximation of quadrilateral finite elements. Math Comp, 2002, 71: 909–922

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuska I, Strouboulis T. The Finite Element Method and Its Reliability. London: Oxford University Press, 2001

    MATH  Google Scholar 

  3. Bank R E, Xu J. Asymptotically exact a posteriori error estimators, Part I: Grids with superconvergence. SIAM J Numer Anal, 2003, 41: 2294–2312

    Article  MathSciNet  MATH  Google Scholar 

  4. Bank R E, Xu J. Asymptotically exact a posteriori error estimators, Part II: General unstructured grids. SIAM J Numer Anal, 2003, 41: 2313–2332

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen C. Structure Theory of Superconvergence of Finite Elements (in Chinese). Changsha: Hunan Science Press, 2001

    Google Scholar 

  6. Chen C, Huang Y. Hign Accuracy Theory of Finite Element Methods (in Chinese). Changsha: Hunan Science Press, 1995

    Google Scholar 

  7. Ewing R E, Liu M M, Wang J. Superconvergence of mixed finite element approximations over quadrilaterals. SIAM J Numer Anal, 1999, 36: 772–787

    Article  MathSciNet  MATH  Google Scholar 

  8. Heimsund B, Tai X C, Wang J. Superconvergence for the gradient of finite element approximations by L2 projections. SIAM J Numer Anal, 2002, 40: 1263–1280

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu J, Zhang S. A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci China Math, 2015, 58: 297–307

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang Y, Xu J. Superconvergence of quadratic finite elements on mildly structured grids. Math Comp, 2008, 77: 1253–1268

    Article  MathSciNet  MATH  Google Scholar 

  11. Jamet P. Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J Numer Anal, 1977, 4: 925–930

    Article  MathSciNet  MATH  Google Scholar 

  12. Lakhany A M, Marek I, Whiteman J R. Superconvergence results on mildly structured triangulations. Comput Methods Appl Mech Engrg, 2000, 189: 1–75

    Article  MathSciNet  MATH  Google Scholar 

  13. Li B, Zhang Z. Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer Meth PDEs, 1999, 15: 151–167

    Article  MathSciNet  MATH  Google Scholar 

  14. Li Z C, Huang H T, Yan N. Global Superconvergence of Finite Elements for Elliptic Equations and Its Applications. Beijing: Science Press, 2012

    Google Scholar 

  15. Lin Q, Yan N. Construction and Analysis of Hign Efficient Finite Elements (in Chinese). Baoding: Hebei University Press, 1996

    Google Scholar 

  16. Ming P B, Shi Z C. Quadrilateral mesh revisited. Comput Meth Appl Mech Engrg, 2002, 191: 5671–5682

    Article  MathSciNet  MATH  Google Scholar 

  17. Ming P B, Shi Z C, Xu Y. Superconvergence studies of quadrilateral nonconforming rotated Q1 elements. Int J Numer Anal Model, 2006, 3: 322–332

    MathSciNet  MATH  Google Scholar 

  18. Naga A, Zhang Z. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin Dyn Syst Ser B, 2005, 5: 769–798

    Article  MathSciNet  MATH  Google Scholar 

  19. Pian T H H. Derivation of element stiffness matrices by assumed stress distributions. AIAA J, 1964, 2: 1333–1336

    Article  Google Scholar 

  20. Pian T H H. State-of-the-art development of hybrid/mixed finite element method. Finite Elem Anal Des, 1995, 21: 5–20

    Article  MathSciNet  MATH  Google Scholar 

  21. Pian T H H, Sumihara K. Rational approach for assumed stress finite element methods. Int J Numer Meth Engrg, 1984, 20: 1685–1695

    Article  MATH  Google Scholar 

  22. Pian T H H, Wu C. Hybrid and Incompatible Finite Element Methods. Boca Raton: CRC Press, 2006

    MATH  Google Scholar 

  23. Piltner R. An alternative version of the Pian-Sumihara element with a simple extension to non-linear problems. Comput Mech, 2000, 26: 483–489

    Article  MATH  Google Scholar 

  24. Schatz A H, Sloan I H, Wahlbin L B. Superconvergence in finite element methods and meshes that are symmetric with respect to a point. SIAM J Numer Anal, 1996, 33: 505–521

    Article  MathSciNet  MATH  Google Scholar 

  25. Shi Z C. A convergence condition for the quadrilateral wilson element. Numer Math, 1984, 44: 349–361

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi Z C, Jiang B, Xue W. A new superconvergence property of Wilson nonconforming finite element. Numer Math, 1997, 78: 259–268

    Article  MathSciNet  MATH  Google Scholar 

  27. Shi Z C, Xu X, Zhang Z. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete Contin Dyn Syst Ser B, 2008, 9: 163–182

    MathSciNet  MATH  Google Scholar 

  28. Wahlbin L B. Superconvergence in Galerkin Finite Element Methods. Berlin: Springer, 1995

    Book  MATH  Google Scholar 

  29. Wu Y, Xie X, Chen L. Hybrid stress finite volume method for linear elasticity problems. Int J Numer Anal Mod, 2013, 10: 634–656

    MathSciNet  MATH  Google Scholar 

  30. Xie X, Xu J. New mixed finite elements for plane elasticity and Stokes equation. Sci China Math, 2011, 54: 1499–1519

    Article  MathSciNet  MATH  Google Scholar 

  31. Xie X, Zhou T. Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals. Int J Numer Meth Engrg, 2004, 59: 293–313

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan N. Superconvergence Analysis and A Posteriori Error Estimation in Finite Element Methods. Beijing: Science Press, 2008

    Google Scholar 

  33. Yu G, Xie X, Carstense C. Uniform convergence and a posterior error estimation for assumed stress hybrid finite element methods. Comput Meth Appl Mech Engrg, 2011, 200: 2421–2433

    Article  MATH  Google Scholar 

  34. Zhang S, Xie X. Accurate 8-Node hybrid hexahedral elements energy-compatible stress modes. Adv Appl Math Mech, 2010, 2: 333–354

    MathSciNet  Google Scholar 

  35. Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasiticity. SIAM J Numer Anal, 1997, 34: 640–663

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang Z. Ultraconvergence of the patch recovery technique II. Math Comp, 2000, 69: 141–158

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang Z. Polynomial preserving gradient recovery and a posterori estimate for bilinear element on irregular quadrialterals. Int J Numer Anal Model, 2004, 1: 1–24

    MathSciNet  Google Scholar 

  38. Zhang Z, Naga A. A new finite element gradient recovery method: Superconvergence property. SIAM J Sci Comput, 2005, 26: 1192–1213

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou T, Nie Y. Combined hybird approach to finite element schemes of high performance. Int J Numer Meth Engrg, 2001, 51: 181–202

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou T, Xie X. A unified analysis for stress/strain hybrid methods of high performance. Comput Meth Appl Meth Engrg, 2002, 191: 4619–4640

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhu Q D, Lin Q. Superconvergence Theory of the Finite Element Method (in Chinese). Changsha: Hunan Science Press, 1989

    Google Scholar 

  42. Zienkiewicz O C, Zhu J Z. The superconvergence pach recovery and a posteriori error estimates, Part 1: The recovery technique. Int J Numer Meth Engrg, 1992, 33: 1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  43. Zlamal M. Superconvergence and reduced integration in the finite element method. Math Comp, 1977, 32: 663–685

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Wu, Y. & Xie, X. Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method. Sci. China Math. 59, 1835–1850 (2016). https://doi.org/10.1007/s11425-016-5144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-5144-3

Keywords

MSC(2010)

Navigation