Skip to main content
Log in

Multi-recurrence and van der Waerden systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We explore recurrence properties arising from dynamical approach to the van der Waerden theorem and similar combinatorial problems. We describe relations between these properties and study their consequences for dynamics. In particular, we present a measure-theoretical analog of a result of Glasner on multi-transitivity of topologically weakly mixing minimal maps. We also obtain a dynamical proof of the existence of a C-set with zero Banach density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin E, Auslander J, Berg K. When is a transitive map chaotic? In: Convergence in Ergodic Theory and Probability. Berlin: de Gruyter, 1996, 25–40

    Google Scholar 

  2. Akin E, Auslander J, Glasner E. The topological dynamics of Ellis actions. Mem Amer Math Soc, 2008, 195: 913

    MathSciNet  MATH  Google Scholar 

  3. Auslander J. Minimal Flows and Their Extensions. In: North-Holland Mathematics Studies, vol. 153. Amsterdam: North-Holland, 1988

    Google Scholar 

  4. Auslander J, Yorke J. Interval maps, factors of maps, and chaos. Tohoku Math J, 1980, 32: 177–188

    Article  MathSciNet  MATH  Google Scholar 

  5. Banks J, Nguyen T, Oprocha P, et al. Dynamics of spacing shifts. Discrete Contin Dyn Syst, 2013, 33: 4207–4232

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchard F, Host B, Ruette S. Asymptotic pairs in positive-entropy systems. Ergodic Theory Dynam Systems, 2002, 22: 671–686

    Article  MathSciNet  MATH  Google Scholar 

  7. Blokh A, Fieldsteel A. Sets that force recurrence. Proc Amer Math Soc, 2002, 130: 3571–3578

    Article  MathSciNet  MATH  Google Scholar 

  8. De D, Hindman N, Strauss D. A new and stronger central sets theorem. Fund Math, 2008, 199: 155–175

    Article  MathSciNet  MATH  Google Scholar 

  9. Downarowicz T. Survey of odometers and Toeplitz flows. In: Algebraic and Topological Dynamics. Contemp Math, vol. 385. Providence: Amer Math Soc, 2005, 7–37

    Chapter  Google Scholar 

  10. Forys M, Huang W, Li J, et al. Invariant scrambled sets, uniform rigidity and weak mixing. Israel J Math, 2016, 211: 447–472

    Article  MathSciNet  MATH  Google Scholar 

  11. Furstenberg H. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Anal Math, 1977, 31: 204–256

    Article  MathSciNet  MATH  Google Scholar 

  12. Furstenberg H. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton: Princeton University Press, 1981

    Book  MATH  Google Scholar 

  13. Furstenberg H, Katznelson Y. An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J Anal Math, 1985, 45: 117–168

    Article  MathSciNet  MATH  Google Scholar 

  14. Furstenberg H, Weiss B. Topological dynamics and combinatorial number theory. J Anal Math, 1978, 34: 61–85

    Article  MathSciNet  MATH  Google Scholar 

  15. Glasner E. Topological ergodic decompositions and applications to products of powers of a minimal transformation. J Anal Math, 1994, 64: 241–262

    Article  MathSciNet  MATH  Google Scholar 

  16. Glasner E. Ergodic Theory via Joinings. Providence: Amer Math Soc, 2003

  17. Glasner E, Weiss B. Sensitive dependence on initial conditions. Nonlinearity, 1993, 6: 1067–1075

    Article  MathSciNet  MATH  Google Scholar 

  18. Glasner S, Maon D. Rigidity in topological dynamics. Ergodic Theory Dynam Systems, 1989, 9: 309–320

    Article  MathSciNet  MATH  Google Scholar 

  19. Hindman N. Small sets satisfying the central sets theorem. In: Combinatorial Number Theory B. Berlin: de Gruyter, 2009, 57–63

    Google Scholar 

  20. Host B, Kra B, Maass A. Variations on topological recurrence. Monatsh Math, 2016, 179: 57–89

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang W, Park K, Ye X. Dynamical systems disjoint from all minimal systems with zero entropy. Bull Soc Math France, 2007, 135: 259–282

    MathSciNet  Google Scholar 

  22. Huang W, Shao S, Ye X. Pointwise convergence of multiple ergodic averages and strictly ergodic models. ArXiv:1406.5930, 2014

    Google Scholar 

  23. Huang W, Ye X, Zhang G. Lowering topological entropy over subsets revisted. Trans Amer Math Soc, 2014, 366: 4423–4442

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson J. A dynamical characterization of C sets. ArXiv:1112.0715, 2011

    Google Scholar 

  25. Lehrer E. Topological mixing and uniquely ergodic systems. Israel J Math, 1987, 57: 239–255

    Article  MathSciNet  MATH  Google Scholar 

  26. Li J. Transitive points via Furstenberg family. Topology Appl, 2011, 158: 2221–2231

    Article  MathSciNet  MATH  Google Scholar 

  27. Li J. Dynamical characterization of C-sets and its applications. Fund Math, 2012, 216: 259–286

    Article  MathSciNet  MATH  Google Scholar 

  28. Li J, Zhang R. Levels of generalized expansiveness. J Dynam Differential Equations, 2015, doi:10.1007/s10884-015-9502-6

    Google Scholar 

  29. Lind D, Marcus B. An Introduction to Symbolic Dynamics and Coding. Cambridge: Cambridge University Press, 1995

    Book  MATH  Google Scholar 

  30. Moothathu T. Diagonal points having dense orbit. Colloq Math, 2010, 120: 127–138

    Article  MathSciNet  MATH  Google Scholar 

  31. Neumann D. Central sequences in dynamical systems. Amer J Math, 1978, 100: 1–18

    Article  MathSciNet  MATH  Google Scholar 

  32. Rado R. Studien zur kombinatorik. Math Z, 1933, 36: 242–280

    Article  MathSciNet  MATH  Google Scholar 

  33. Stanley B. Bounded density shifts. Ergodic Theory Dynam Systems, 2013, 33: 1891–1928

    Article  MathSciNet  MATH  Google Scholar 

  34. Szemerédi E. On sets of integers containing no k elements in arithmetic progression. Acta Arith, 1975, 27: 199–245

    MathSciNet  MATH  Google Scholar 

  35. Van der Waerden L. Beweis eine baudetschen vermutung nieus arch. Wisk, 1927, 15: 212–216

    MATH  Google Scholar 

  36. Weiss B. Multiple recurrence and doubly minimal systems. In: Topological Dynamics and Applications. Contemp Math, vol. 215. Providence: Amer Math Soc, 1998, 189–196

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre (Grant No. DEC-2012/07/E/ST1/00185), National Natural Science Foundation of China (Grant Nos. 11401362, 11471125, 11326135, 11371339 and 11431012), Shantou University Scientific Research Foundation for Talents (Grant No. NTF12021) and the Project of LQ1602 IT4Innovations Excellence in Science. The authors thank Jie Li for the careful reading and helpful comments. A substantial part of this paper was written when the authors attended the activity “Dynamics and Numbers”, June–July 2014, held at the Max Planck Institute f¨ur Mathematik (MPIM) in Bonn, Germany. Some part of the work was continued when the authors attended a conference held at the Wuhan Institute of Physics and Mathematics, China, and the satellite conference of 2014 ICM at Chungnam National University, South Korea. The authors are grateful to the organizers for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwietniak, D., Li, J., Oprocha, P. et al. Multi-recurrence and van der Waerden systems. Sci. China Math. 60, 59–82 (2017). https://doi.org/10.1007/s11425-015-0860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-0860-8

Keywords

MSC(2010)

Navigation