Skip to main content
Log in

Orlicz-Hardy spaces and their duals

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We establish the theory of Orlicz-Hardy spaces generated by a wide class of functions. The class will be wider than the class of all the N-functions. In particular, we consider the non-smooth atomic decomposition. The relation between Orlicz-Hardy spaces and their duals is also studied. As an application, duality of Hardy spaces with variable exponents is revisited. This work is different from earlier works about Orlicz-Hardy spaces H Φ(ℝn) in that the class of admissible functions ϕ is largely widened. We can deal with, for example,

$$\Phi (r) \equiv \left\{ \begin{gathered} r^{p1} \left( {\log \left( {e + {1 \mathord{\left/ {\vphantom {1 r}} \right. \kern-\nulldelimiterspace} r}} \right)} \right)^{q1} , 0 < r \leqslant 1, \hfill \\ r^{p2} \left( {\log \left( {e + r} \right)} \right)^{q2} , r > 1, \hfill \\ \end{gathered} \right.$$

with p 1, p 2 ∈ (0,∞) and q 1, q 2 ∈ (−∞,∞), where we shall establish the boundedness of the Riesz transforms on H Φ(ℝn). In particular, ϕ is neither convex nor concave when 0 < p 1 < 1 < p 2 < ∞, 0 < p 2 < 1 < p 1 < ∞ or p 1 = p 2 = 1 and q 1, q 2 > 0. If Φ(r) ≡ r(log(e+r))q, then H Φ(ℝn) = H(log H)q(ℝn). We shall also establish the boundedness of the fractional integral operators I α of order α ∈ (0,∞). For example, I α is shown to be bounded from H(log H)1 − α/n (ℝn) to L n/(nα)(log L)(ℝn) for 0 < α < n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh B T, J. Li, Orlicz-Hardy spaces associated to operators satisfying bounded H -functional calculus and Davies-Gaffney estimates. J Math Anal Appl, 2011, 373: 485–501

    Article  MATH  MathSciNet  Google Scholar 

  2. Antonov N Y. Convergence of Fourier series. East J Approx, 1996, 2: 187–196

    MATH  MathSciNet  Google Scholar 

  3. Bergh J, Jörgen L. Interpolation Spaces: An Introduction. Grundlehren der Mathematischen Wissenschaften. Berlin-New York: Springer-Verlag, 1976

    Book  Google Scholar 

  4. Bui H Q. Some aspects of weighted and non-weighted Hardy spaces. Kokyuroku Res Inst Math Sci, 1980, 383: 38–56

    Google Scholar 

  5. Bui H Q. Weighted Besov and Triebel spaces: Interpolation by the real method. Hiroshima Math J, 1982, 12: 581–605

    MATH  MathSciNet  Google Scholar 

  6. Bui T A, Cao J, Ky L D, et al. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off diagonal estimates. Anal Geom Metric Spaces, 2012, 1: 69–129

    MathSciNet  Google Scholar 

  7. Cao J, Chang D C, Yang D, et al. Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans Amer Math Soc, 2013, 365: 4729–4809

    Article  MATH  MathSciNet  Google Scholar 

  8. Cianchi A. Strong and weak type inequalities for some classical operators in Orlicz spaces. J London Math Soc (2), 1999, 60: 187–202

    Article  MathSciNet  Google Scholar 

  9. Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645

    Article  MATH  MathSciNet  Google Scholar 

  10. Cruz-Uribe D V, Wang L A. Variable Hardy spaces. ArXiv:1211.6505, 2014

    Google Scholar 

  11. Curbera P, García-Cuerva J, Martell J, et al. Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv Math, 2006, 203: 256–318

    Article  MATH  MathSciNet  Google Scholar 

  12. DeVore R A, Sharpley R C. Maximal functions measuring smoothness. Mem Amer Math Soc, 1984, 47: viii+115

    MathSciNet  Google Scholar 

  13. Duoandikoetxea J. Fourier Analysis. Providence, RI: Amer Math Soc, 2001

    MATH  Google Scholar 

  14. Edmunds D E, Gurka P, Opic B. Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ Math J, 1995, 44: 19–43

    Article  MATH  MathSciNet  Google Scholar 

  15. Fefferman C, Stein E. H p spaces of several variables. Acta Math, 1972, 129: 137–193

    Article  MATH  MathSciNet  Google Scholar 

  16. Gallardo D. Orlicz spaces for which the Hardy-Littlewood maximal operator is bounded. Publ Mat, 1988, 32: 261–266

    Article  MATH  MathSciNet  Google Scholar 

  17. García-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam-New York-Oxford: North-Holland, 1985

    MATH  Google Scholar 

  18. Goldberg D. A local version of real Hardy spaces. Duke Math J, 1979, 46: 27–42

    Article  MATH  MathSciNet  Google Scholar 

  19. Grafakos L. Classical Fourier Analysis. New York: Springer, 2008

    MATH  Google Scholar 

  20. Grafakos L, Tao T, Terwilleger E. L p bounds for a maximal dyadic sum operator. Math Z, 2004, 246: 321–337

    Article  MATH  MathSciNet  Google Scholar 

  21. Grevholm B. On the structure of the spaces \(\mathcal{L}_k ^{p,\lambda }\). Math Scand, 1971, 26: 241–254

    MathSciNet  Google Scholar 

  22. Hou S, Yang D, Yang S. Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun Contemp Math, 2013, doi: 10.1142/S0219199713500296

    Google Scholar 

  23. Hou S, Yang D, Yang S. Musielak-Orlicz BMO-type spaces associated with generalized approximations to the identity. ArXiv:1303.6366, 2013

    Google Scholar 

  24. Iwaniec T, Onninen J. H 1-estimates of Jacobians by subdeterminants. Math Ann, 2002, 324: 341–358

    Article  MATH  MathSciNet  Google Scholar 

  25. Iwaniec T, Sbordone C. Weak minima of variational integrals. J Reine Angew Math, 1994, 454: 143–161

    MATH  MathSciNet  Google Scholar 

  26. Iwaniec T, Verde A. A study of Jacobians in Hardy-Orlicz spaces. Proc Roy Soc Edinburgh Sect A, 1999, 129: 539–570

    Article  MATH  MathSciNet  Google Scholar 

  27. Kokilashvili V, Krbec M. Weighted Inequalities in Lorentz and Orlicz Spaces. River Edge, NJ: World Scientific Publishing, 1991

    Book  MATH  Google Scholar 

  28. Jiang R, Yang D. New Orlicz-Hardy spaces associated with divergence form elliptic operators. J Funct Anal, 2010, 258: 1167–1224

    Article  MATH  MathSciNet  Google Scholar 

  29. Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282: 219–231

    Article  MATH  MathSciNet  Google Scholar 

  30. Krantz S G. Fractional integration on Hardy spaces. Studia Math, 1982, 73: 87–94

    MATH  MathSciNet  Google Scholar 

  31. Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115–150

    Article  MATH  MathSciNet  Google Scholar 

  32. Lerner A K. A simple proof of the A 2 conjecture. Int Math Res Not, 2013, 2013: 3159–3170

    MathSciNet  Google Scholar 

  33. Liang Y, Huang J, Yang D. New real-variable characterizations of Musielak-Orlicz Hardy spaces. J Math Anal Appl, 2012, 395: 413–428

    Article  MATH  MathSciNet  Google Scholar 

  34. Liang Y, Yang D. Musielak-Orlicz Campanato spaces and applications. J Math Anal Appl, 2013, 406: 307–322

    Article  MathSciNet  Google Scholar 

  35. Liang Y, Yang D, Yuan W, et al. A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces. Diss Math, 2013, 489: 114pp

  36. Luxenberg W. Banach Function Spaces. Delft: Technische Hogeschool te Delft, 1955

    Google Scholar 

  37. Miyamoto T, Nakai E, Sadasue G. Martingale Orlicz-Hardy spaces. Math Nachr, 2012, 285: 670–686

    Article  MATH  MathSciNet  Google Scholar 

  38. Mizuta Y, Nakai E, Sawano Y, et al. Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials. J Math Soc Japan, 2013, 65: 633–670

    Article  MATH  MathSciNet  Google Scholar 

  39. Nakai E. On the restriction of functions of bounded mean oscillation to the lower-dimensional space. Arch Math, 1984, 43: 519–529

    Article  MATH  MathSciNet  Google Scholar 

  40. Nakai E. Pointwise multipliers for functions of weighted bounded mean oscillation. Studia Math, 1993, 105: 106–119

    MathSciNet  Google Scholar 

  41. Nakai E. Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math Nachr, 1994, 166: 95–103

    Article  MATH  MathSciNet  Google Scholar 

  42. Nakai E. Generalized fractional integrals on Orlicz-Morrey spaces. In: Banach and Function Spaces. Yokohama: Yokohama Publishers, 2004, 323–333

    Google Scholar 

  43. Nakai E. Construction of an atomic decomposition for functions with compact support. J Math Anal Appl, 2006, 313: 730–737

    Article  MATH  MathSciNet  Google Scholar 

  44. Nakai E. The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Studia Math, 2006, 176: 1–19

    Article  MATH  MathSciNet  Google Scholar 

  45. Nakai E. A generalization of Hardy spaces H p by using atoms. Acta Math Sin Engl Ser, 2008, 24: 1243–1268

    Article  MATH  MathSciNet  Google Scholar 

  46. Nakai E. Calderon-Zygmund operators on Orlicz-Morrey spaces and modular inequalities. In: Banach and Function Spaces II. Yokohama: Yokohama Publishers, 2008, 393–410

    Google Scholar 

  47. Nakai E. Singular and fractional integral operators on Campanato spaces with variable growth conditions. Rev Mat Complut, 2010, 23: 355–381

    Article  MATH  MathSciNet  Google Scholar 

  48. Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J Funct Anal, 2012, 262: 3665–3748

    Article  MATH  MathSciNet  Google Scholar 

  49. Nakano H. Modulared Semi-Ordered Linear Spaces. Tokyo: Maruzen, 1950

    MATH  Google Scholar 

  50. Nakano H. Topology of Linear Topological Spaces. Tokyo: Maruzen, 1951

    Google Scholar 

  51. Samko N. Weighted Hardy and potential operators in Morrey spaces. J Funct Spaces Appl, 2012, 2012: 1–21

    Article  Google Scholar 

  52. O’Neil R. Fractional integration in Orlicz spaces: I. Trans Amer Math Soc, 1965, 115: 300–328

    Article  MATH  MathSciNet  Google Scholar 

  53. Peetre J. On interpolation functions: II. Acta Sci Math, 1968, 29: 91–92

    MATH  MathSciNet  Google Scholar 

  54. Rauhut H, Ullrich T. Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type. J Funct Anal, 2011, 260: 3299–3362

    Article  MATH  MathSciNet  Google Scholar 

  55. Rychkov V S. Littlewood-Paley theory and function spaces with A locp weights. Math Nachr, 2001, 224: 145–180

    Article  MATH  MathSciNet  Google Scholar 

  56. Sawano Y. Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math J, 2005, 34: 435–458

    Article  MATH  MathSciNet  Google Scholar 

  57. Sawano Y. A note on Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Acta Math Sin Engl Ser, 2009, 25: 1223–1242

    Article  MATH  MathSciNet  Google Scholar 

  58. Serra C F. Molecular characterization of Hardy-Orlicz spaces. Rev Un Mat Argentina, 1996, 40: 203–217

    MATH  MathSciNet  Google Scholar 

  59. Stein E M. Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993

    MATH  Google Scholar 

  60. Stein E M, Weiss G. On the theory of harmonic functions of several variables, I: The theory of H p-spaces. Acta Math, 1960, 103: 25–62

    Article  MATH  MathSciNet  Google Scholar 

  61. Strichartz R S. A note on Trudinger’s extension of Sobolev’s inequalities. Indiana Univ Math J, 1972, 21: 841–842

    Article  MATH  MathSciNet  Google Scholar 

  62. Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Berlin-New York: Springer-Verlag, 1989

    MATH  Google Scholar 

  63. Taibleson M H. On the theory of Lipschitz spaces of distributions on Euclidean n-space, I: Principal properties. J Math Mech, 1964, 13: 407–479

    MathSciNet  Google Scholar 

  64. Taibleson M H, Weiss G. The molecular characterization of certain Hardy spaces. Asterisque, 1980, 77: 67–149

    MATH  MathSciNet  Google Scholar 

  65. Torchinsky A. Interpolation of operations and Orlicz classes. Studia Math, 1976, 59: 177–207

    MATH  MathSciNet  Google Scholar 

  66. Triebel H. Theory of Function Spaces. Basel: Birkhäuser, 1983

    Book  Google Scholar 

  67. Trudinger N S. On imbeddings into Orlicz spaces and some applications. J Math Mech, 1967, 17: 473–483

    MATH  MathSciNet  Google Scholar 

  68. Ullrich T. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J Funct Spaces Appl, 2012, 2012: 1–47

    Article  MathSciNet  Google Scholar 

  69. Viviani B E. An atomic decomposition of the predual of BMO(ρ). Rev Mat Iberoamericana, 1987, 3: 401–425

    Article  MATH  MathSciNet  Google Scholar 

  70. Yang D, Yang S. Weighted local Orlicz Hardy spaces with applications to pseudo-differential operators. ArXiv:1107.3266, 2011

    Google Scholar 

  71. Yang D, Yang S. Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of ℝn. Indiana Univ Math J, 2012, 61: 81–129

    Article  MATH  MathSciNet  Google Scholar 

  72. Yang D, Yang S. Local Hardy spaces of Musielak-Orlicz type and their applications. Sci China Math, 2012, 55: 1677–1720

    Article  MATH  MathSciNet  Google Scholar 

  73. Yang D, Yang S. Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of ℝn. RevMat Iberoam, 2013, 29: 237–292

    Article  MATH  Google Scholar 

  74. Yang D, Yang S. Musielak-Orlicz Hardy spaces associated with operators and their applications. J Geom Anal, 2012, doi: 10.1007/s12220-012-9344-y

    Google Scholar 

  75. Yang D, Yuan W, Zhuo C. Musielak-Orlicz Besov-type and Triebel-Lizorkin-type spaces. Rev Mat Complut, 2014, 27: 93–157

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Sawano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, E., Sawano, Y. Orlicz-Hardy spaces and their duals. Sci. China Math. 57, 903–962 (2014). https://doi.org/10.1007/s11425-014-4798-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4798-y

Keywords

MSC(2010)

Navigation