Skip to main content
Log in

Well-posedness for the stochastic 2D primitive equations with Lévy noise

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The two-dimensional primitive equations with Lévy noise are studied in this paper. We proved the existence and uniqueness of the solutions in a fixed probability space which based on a priori estimates, weak convergence method and monotonicity arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Albeverio S, Wu J L, Zhang T S. Parabolic SPDEs driven by Poisson white noise. Stoch Process Appl, 1998, 74: 21–36

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio S, Rüdiger B, Wu J L. Analytic and probabilistic aspects of Lévy processes and fields in quantum theory. In: Barndorff-Nielsen O, Mikosch T, Resnick S, eds. Lévy Processes: Theory and Applications. Basel: Birkhäuser Verlag, 2001, 187–224

    Chapter  Google Scholar 

  3. Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, vol. 93. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  4. Cao C S, Titi E S. Global well-posedness of the three-dimensional primitive equations of large scale ocean and atmosphere dynamics. Ann Math, 2007, 166: 245–267

    Article  MathSciNet  MATH  Google Scholar 

  5. Cushman-Roisin B, Beckers J M. Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. New York: Academic Press, 2007

    Google Scholar 

  6. Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge University Press, 1992

    Book  MATH  Google Scholar 

  7. Debussche A, Glatt-Holtz N, Temam R. Local martingale and pathwise solutions for an abstract fluids model. Phys D, 2011, 240: 1123–1144

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong Z, Xie Y C. Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise. Sci China Ser A, 2009, 52: 1497–1524

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong Z, Xu L H, Zhang X C. Invariance measures of stochastic 2D Navier-Stokes equations driven by α-stable processes. Elect Comm Probab, 2011, 16: 678–688

    MathSciNet  MATH  Google Scholar 

  10. Duan J Q, Millet A. Large deviations for the Boussinesq equations under random influences. Stoch Process Appl, 2009, 119: 2052–2081

    Article  MathSciNet  MATH  Google Scholar 

  11. Ewald B, Petcu M, Temam R. Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise. Anal Appl, 2007, 5: 183–198

    Article  MathSciNet  MATH  Google Scholar 

  12. Flandoli F. An introduction to 3D stochastic fluid dynamics. In: SPDE in Hydrodynamic: Recent Progress and Prospects. Lecture Notes in Math, 1942. Berlin: Springer, 2008, 51–150

    Chapter  Google Scholar 

  13. Fournier N. Malliavin calculus for parabolic SPDEs with jumps. Stoch Process Appl, 2000, 87: 115–147

    Article  MathSciNet  MATH  Google Scholar 

  14. Frankignoul C, Hasselmann K. Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 1977, 29: 289–305

    Article  Google Scholar 

  15. Gao H J, Sun C F. Random attractor for the 3D viscous stochastic primitive equations with additive noise. Stoch Dyn, 2009, 9: 293–313

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao H J, Sun C F. Well-posedness and large deviations for the stochastic primitive equations in two space dimensions. Comm Math Sci, 2012, 10: 575–593

    MathSciNet  Google Scholar 

  17. Glatt-Holtz N, Temam R. Pathwise solutions of the 2-d stochastic primitive equations. Appl Math Optim, 2011, 63: 401–433

    Article  MathSciNet  MATH  Google Scholar 

  18. Glatt-Holtz N, Ziane M. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete Contin Dyn Syst Ser B, 2008, 10: 801–822

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo B L, Huang D W. 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attractors. Commun Math Phys, 2009, 286: 697–723

    Article  MathSciNet  MATH  Google Scholar 

  20. Guillén-Gonzáez F, Masmoudi N, Rodríguez-Bellido M A. Anisotropic estimates and strong solutions of the primitive equations. Differential Integral Equations, 2001, 14: 1381–1408

    MathSciNet  Google Scholar 

  21. Hausenblas E. Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure. Electron J Probab, 2005, 10: 1496–1546

    Article  MathSciNet  Google Scholar 

  22. Hu C, Temam R, Ziane M. The primitive equations on the large scale ocean under the small depth hypothesis. Discrete Contin Dyn Syst, 2003, 9: 97–131

    Article  MathSciNet  MATH  Google Scholar 

  23. Ju N. The global attractor for the solutions to the 3d viscous primitive equations. Discrete Contin Dyn Syst, 2007, 17: 159–179

    Article  MathSciNet  MATH  Google Scholar 

  24. Kobelkov G M. Existence of a solution in “whole” for the large-scale ocean dynamics equations. C R Math Acad Sci Paris, 2006, 343: 283–286

    Article  MathSciNet  MATH  Google Scholar 

  25. Kobelkov G M, Zalesny V B. Existence and uniqueness of a solution to primitive equations with stratification ‘in the large’. Russian J Numer Anal Math Modelling, 2008, 23: 39–61

    MathSciNet  MATH  Google Scholar 

  26. Kukavica I, Ziane M. On the regularity of the primitive equations of the ocean. Nonlinearity, 2007, 20: 2739–2753

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions J L, Temam R, Wang S H. Models for the coupled atmosphere and ocean. Comput Mech Adv, 1993, 1: 1–120

    Article  MathSciNet  Google Scholar 

  28. Lions J L, Temam R, Wang S H. New formulations of the primitive equations of atmosphere and applications. Nonlinearity, 1992, 5: 237–288

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions J L, Temam R, Wang S H. On the equations of the large-scale ocean. Nonlinearity, 1992, 5: 1007–1053

    Article  MathSciNet  MATH  Google Scholar 

  30. Manna U, Mohan M T. Shell model of turbulence perturbed by Lévy noise. NoDEA Nonlinear Differential Equations Appl, 2011, 18: 615–648

    Article  MathSciNet  MATH  Google Scholar 

  31. Müller P. Stochastic forcing of quasi-geostrophic eddies. In: Adler R J, Müller P, Rozovskii B, eds. Stochastic Modelling in Physical Oceanography. Basel: Birkhäuser, 1996, 381–395

    Chapter  Google Scholar 

  32. Pedlosky J. Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987

    Book  MATH  Google Scholar 

  33. Peszat S, Zabczyk J. Stochastic Partial Differential Equations with Lévy Noise, Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 2007

    Book  Google Scholar 

  34. Petcu M. Gevrey class regularity for the primitive equations in space dimension 2. Asymptot Anal, 2004, 39: 1–13

    MathSciNet  MATH  Google Scholar 

  35. Petcu M, Temam R, Wirosoetisno D. Existence and regularity results for the primitive equations in two space dimensions. Commun Pure Appl Anal, 2004, 3: 115–131

    Article  MathSciNet  MATH  Google Scholar 

  36. Petcu M, Temam R, Ziane M. Some mathematical problems in geophysical fluid dynamics. In: Special Volume on Computational Methods for the Atmosphere and the Oceans, Volume 14 of Handbook of Numerical Analysis. New York: Elsevier, 2008, 577–750

    Google Scholar 

  37. Phillips O M. On the generation of waves by turbulent winds. J Fluid Mech, 1957, 2: 417–445

    Article  MathSciNet  MATH  Google Scholar 

  38. Rong S T. Theorey of Stochastic Differential Equations with Jumps and Applications. New York: Springer, 2005

    Google Scholar 

  39. Röckner M, Zhang T S. Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles. Potential Anal, 2007, 26: 255–279

    Article  MathSciNet  MATH  Google Scholar 

  40. Rüdiger B. Stochastic integration with respect to compensated Piosson randon measures on separable Banach spaces. Stoch Stoch Reports, 2004, 76: 213–242

    Article  MATH  Google Scholar 

  41. Shlesinger M F, Zavslavsky G M, Feisch U, eds. Lévy Flights and Related Topics in Physics. Berlin: Springer-Verlag, 1995

    MATH  Google Scholar 

  42. Temam R, Ziane M. Some mathematical problems in geophysical fluid dynamics. In: Handbook of Mathematical Fluid Dynamics. Oxford: Elsevier, 2007, 535–658

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongJun Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Gao, H. Well-posedness for the stochastic 2D primitive equations with Lévy noise. Sci. China Math. 56, 1629–1645 (2013). https://doi.org/10.1007/s11425-013-4590-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4590-4

Keywords

MSC(2010)

Navigation