Skip to main content
Log in

Testing the independence of sets of large-dimensional variables

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions p 1 and p 2 when the dimensions p = p 1 + p 2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional χ 2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p > n, while the corrected LRT is unfeasible due to the loss of definition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson T W. An Introduction to Multivariate Statistical Analysis, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2003

    MATH  Google Scholar 

  2. Bai Z D. Methodologies in spectral analysis of large-dimensional random matrices: A review. Statist Sinica, 1999, 9: 611–677

    MathSciNet  MATH  Google Scholar 

  3. Bai Z D, Jiang D D, Yao J F, et al. Corrections to LRT on large-dimensional covariance matrix by RMT. Ann Statist, 2009, 37: 3822–3840

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai Z D, Silverstein J W. CLT for linear spectral statistics of largedimensional sample covariance matrices. Ann Probab, 2004, 32: 553–605

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai Z D, Silverstein J W. Spectral Analysis of large-dimensional Random Matrices, 2nd ed. Beijing: Science Press, 2010

    Book  MATH  Google Scholar 

  6. Cai T, Jiang T. Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices. Ann Statist, 2011, 39: 1496–1525

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen S X, Zhang L X, Zhong P S. Testing high dimensional covariance matrices. J Amer Statist Assoc, 2010, 105: 810–819

    Article  MathSciNet  Google Scholar 

  8. Dempster A P. A high dimensional two sample significance test. Ann Math Statist, 1958, 29: 995–1010

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujikoshi Y, Sakurai T. High-dimensional asymptotic expansions for the distributions of canonical correlations. J Multivariate Anal, 2009, 100: 231–242

    Article  MathSciNet  MATH  Google Scholar 

  10. Hotelling H. Relations between two sets of variants. Biometrika, 1936, 28: 321–377

    MATH  Google Scholar 

  11. Jonsson D. Some limit theorems for the eigenvalues of a sample covariance matrix. J Multivariate Anal, 1982, 12: 1–38

    Article  MathSciNet  MATH  Google Scholar 

  12. Ledoit O, Wolf M. Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann Statist, 2002, 30: 1081–1102

    Article  MathSciNet  MATH  Google Scholar 

  13. Li J, Chen S X. Two sample tests for high dimensional covariance matrices. Ann Statist, 2012, 40: 908–940

    Article  MATH  Google Scholar 

  14. Schott J R. Testing for complete independence in high dimensions. Biometrika, 2005, 92: 951–956

    Article  MathSciNet  MATH  Google Scholar 

  15. Silverstein J W. The limiting eigenvalue distribution of a multivariate F matrix. SIAM J Math Anal, 1985, 16: 641–646

    Article  MathSciNet  MATH  Google Scholar 

  16. Sugiura N, Fujikoshi Y. Asymptotic expansions of the non-null eistributions of the likelihood ratio criteria for multivariate linear hypothesis and independence. Ann Math Statist, 1969, 40: 942–952

    Article  MathSciNet  MATH  Google Scholar 

  17. Wilks S S. On the independence of k sets of normally distributed statistical variables. Econometrica, 1935, 3: 309–326

    Article  MATH  Google Scholar 

  18. Yin Y Q, Bai Z D, Krishnaiah P R. Limiting behavior of the eigenvalues of a multivariate F-matrix. J Multivariate Anal, 1983, 13: 508–516

    Article  MathSciNet  MATH  Google Scholar 

  19. Zheng S R. Central limit theorems for linear spectral statistics of large-dimensional F-matrices. Ann Inst Henri Poincaré Probab Statist, 2012, 48: 444–476

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiDong Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, D., Bai, Z. & Zheng, S. Testing the independence of sets of large-dimensional variables. Sci. China Math. 56, 135–147 (2013). https://doi.org/10.1007/s11425-012-4501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4501-0

Keywords

MSC(2010)

Navigation