Skip to main content
Log in

A quantum analogue of generic bases for affine cluster algebras

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We construct quantized versions of generic bases in quantum cluster algebras of finite and affine types. Under the specialization of q and coefficients to 1, these bases are generic bases of finite and affine cluster algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buan A, Marsh R, Reineke M, et al. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572–618

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenstein A, Zelevinsky A. Quantum cluster algebras. Adv Math, 2005, 195: 405–455

    Article  MathSciNet  MATH  Google Scholar 

  3. Caldero P, Chapoton F. Cluster algebras as Hall algebras of quiver representations. Comm Math Helv, 2006, 81:595–616

    Article  MathSciNet  MATH  Google Scholar 

  4. Caldero P, Keller B. From triangulated categories to cluster algebras. Invent Math, 2008, 172: 169–211

    Article  MathSciNet  MATH  Google Scholar 

  5. Caldero P, Keller B. From triangulated categories to cluster algebras II. Ann Sci École Norm Sup, 2006, 39: 983–1009

    MathSciNet  MATH  Google Scholar 

  6. Caldero P, Reineke M. On the quiver Grassmannian in the acyclic case. J Pure Appl Algebra, 2008, 212: 2369–2380

    Article  MathSciNet  MATH  Google Scholar 

  7. Caldero P, Zelevinsky A. Laurent expansions in cluster algebras via quiver representations. Moscow Math J, 2006, 6:411–429

    MathSciNet  MATH  Google Scholar 

  8. Crawley-Boevey W. Lectures on Representations of Quivers. 1992

  9. Ding M, Xiao J, Xu F. Realizing enveloping algebras via varieties of modules. Acta Math Sinica Engl Ser, 2010, 26:29–48

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding M, Xiao J, Xu F. Integral bases of cluster algebras and representations of tame quivers. Algebras Represent Theory, 2011, doi: 10.1007/s10468-011-9317-z

  11. Ding M, Xu F. Bases of the quantum cluster algebra of the Kronecker quiver. Acta Math Sinica Engl Ser, 2012, 28:1169–1178

    Article  MathSciNet  Google Scholar 

  12. Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Mem Amer Math Soc, 1976, 173

  13. Dupont G. Generic variables in acyclic cluster algebras. J Pure Appl. Algebra, 2011, 215: 628–641

    Article  MathSciNet  MATH  Google Scholar 

  14. Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15: 497–529

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154: 63–121

    MathSciNet  MATH  Google Scholar 

  16. Green J A. Hall algebras, hereditary algebras and quantum groups. Invent Math, 1995, 120: 361–377

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo J, Peng L. Universal PBW-Basis of Hall-Ringel Algebras and Hall Polynomials. J Algebra, 1997, 198: 339–351

    Article  MathSciNet  MATH  Google Scholar 

  18. Hubery A. Acyclic cluster algebras via Ringel-Hall algebras. Preprint, 2005

  19. Hubery A. Hall polynomials for affine quivers. Represent Theory, 2010, 14: 355–378

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin F. Quantum Cluster variables via Serre polynomials. J Reine Angew Math, in press; ArXiv: 1004.4171

  21. Geiss C, Leclerc B, Schröer J. Rigid modules over preprojective algebras. Invent Math, 2006, 165: 589–632

    Article  MathSciNet  MATH  Google Scholar 

  22. Geiss C, Leclerc B, Schröer J. Semicanonical bases and preprojective algebras II: A multiplication formula. Compos Math, 2007, 143: 1313–1334

    Article  MathSciNet  MATH  Google Scholar 

  23. Geiss C, Leclerc B, Schröer J. Kac-Moody groups and cluster algebras. Adv Math, in Press; ArXiv: 1001.3545

  24. Geiss C, Leclerc B, Schröer J. Generic bases for cluster algebras and the chamber ansatz. J Amer Math Soc, 2012, 25:21–76

    Article  MathSciNet  MATH  Google Scholar 

  25. Ringel C M. Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, vol. 1099. New York: Springer, 1984

    Google Scholar 

  26. Ringel C M. Hall polynomials for the representation-finite hereditary algebras. Adv Math, 1990, 84: 137–178

    Article  MathSciNet  MATH  Google Scholar 

  27. Rupel D. On a quantum analogue of the Caldero-Chapoton Formula. Int Math Res Notices, 2011, 14: 3207–3236

    MathSciNet  Google Scholar 

  28. Sherman P, Zelevinsky A. Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. Moscow Math J, 2004, 4: 947–974

    MathSciNet  MATH  Google Scholar 

  29. Zhu B. Equivalence between cluster categories. J Algebra, 2006, 304: 832–850

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, M., Xu, F. A quantum analogue of generic bases for affine cluster algebras. Sci. China Math. 55, 2045–2066 (2012). https://doi.org/10.1007/s11425-012-4423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4423-x

Keywords

MSC(2010)

Navigation