Skip to main content
Log in

Quantitative Poincaré recurrence in continued fraction dynamical system

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let T: XX be a transformation. For any x ∈ [0, 1) and r > 0, the recurrence time T r (x) of x under T in its r-neighborhood is defined as

$$\tau _r (x) = \inf \{ k \geqslant 1:d(T^k (x),x) < r\} .$$

For 0 ⩽ αββ, let E(α, β) be the set of points with prescribed recurrence time as follows

$$E\left( {\alpha ,\beta } \right) = \left\{ {x \in X:\mathop {\lim \inf }\limits_{r \to 0} \frac{{\log \tau _r \left( x \right)}} {{ - \log r}} = \alpha , \mathop {\lim \sup }\limits_{r \to 0} \frac{{\log \tau _r \left( x \right)}} {{ - \log r}} = \beta } \right\}.$$

In this note, we consider the Gauss transformation T on [0, 1), and determine the size of E(α, β) by showing that dim H E(α, β) =1 no matter what α and β are. This can be compared with Feng and Wu’s result [Nonlinearity, 14 (2001), 81–85] on the symbolic space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afraimovich V, Ugalde E, Urías J. Fractal dimensions for Poincaré recurrences, volume 2 of Monograph Series on Nonlinear Science and Complexity. Amsterdam: Elsevier, 2006

    Google Scholar 

  2. Barreira L, Saussol B. Product structure of Poincaré recurrence. Ergodic Theory Dynam Systems, 2002, 22: 33–61

    Article  MATH  MathSciNet  Google Scholar 

  3. Billingsley P. Ergodic theory and information. New York: John Wiley & Sons Inc, 1965

    MATH  Google Scholar 

  4. Falconer K. Fractal Geometry. 2nd ed. In: Mathematical Foundations and Applications. Hoboken, NJ: John Wiley & Sons Inc, 2003

    Google Scholar 

  5. Feng D, Wu J. The Hausdorff dimension of recurrent sets in symbolic spaces. Nonlinearity, 2001, 14: 81–85

    Article  MATH  MathSciNet  Google Scholar 

  6. Iosifescu M, Kraaikamp C. Metrical theory of continued fractions, volume 547 of Mathematics and its Applications. Dordrecht: Kluwer Academic Publishers, 2002

    Google Scholar 

  7. Jarník V. Zur metrischen theorie der diophantischen approximationen. Prace Mat Fiz, 1929, 36: 91–106

    Google Scholar 

  8. Khintchine A Y. Continued Fractions. Translated by Peter Wynn P. Groningen: Noordhoff Ltd, 1963

    MATH  Google Scholar 

  9. Mauldin R D, Urbański M. Conformal iterated function systems with applications to the geometry of continued fractions. Trans Amer Math Soc, 1999, 351: 4995–5025

    Article  MATH  MathSciNet  Google Scholar 

  10. Ornstein D S, Weiss B. Entropy and data compression schemes. IEEE Trans Inform Theory, 1993, 39: 78–83

    Article  MATH  MathSciNet  Google Scholar 

  11. Peng L. Dimension of sets of sequences defined in terms of recurrence of their prefixes. C R Math Acad Sci Paris, 2006, 343: 129–133

    MATH  MathSciNet  Google Scholar 

  12. Saussol B, Wu J. Recurrence spectrum in smooth dynamical systems. Nonlinearity, 2003, 16: 1991–2001

    Article  MATH  MathSciNet  Google Scholar 

  13. Wu J. A remark on the growth of the denominators of convergents. Monatsh Math, 2006, 147: 259–264

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, L., Tan, B. & Wang, B. Quantitative Poincaré recurrence in continued fraction dynamical system. Sci. China Math. 55, 131–140 (2012). https://doi.org/10.1007/s11425-011-4303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4303-9

Keywords

MSC(2010)

Navigation