Skip to main content
Log in

Solution of an open problem for Schur convexity or concavity of the Gini mean values

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ℝ × ℝ is still open. In this paper, we prove that S(a, b; x, y) is Schur convex with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): a ⩾ 0, b ⩾ 0, a + b ⩾ 1}, and Schur concave with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): b ⩽ 0, ba, a + b ⩽ 1} ∩ {(a, b): a ⩽ 0, ab, a + b ⩽ 1}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gini C. Di una formula comprensiva delle medie. Metron, 13: 3–22 (1938)

    MATH  Google Scholar 

  2. Páles Z. Inequalities for differences of powers. J Math Anal Appl, 131(1): 271–281 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Leach E B, Sholander M C. Extended mean values. Amer Math Monthly, 85(2): 84–90 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Neuman E, Sándor J. Inequalities involving Stolarsky and Gini means. Math Pannon, 14(1): 29–44 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Stolarsky K B. Generalizations of the logarithmic mean. Math Mag, 48: 87–92 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rassias Th M. Survey on Classical Inequalities. Dordrecht: Kluwer Academic Publishers, 2000

    MATH  Google Scholar 

  7. Hwang F K, Rothblum U G. Partition-optimization with Schur convex sum objective functions. SIAM J Discrete Math, 18(3): 512–524 (2004/2005)

    Article  MathSciNet  Google Scholar 

  8. Zhang X M. Schur-convex functions and isoperimetric inequalities. Proc Amer Math Soc, 126(2): 461–470 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stepniak C. Stochastic ordering and Schur-convex functions in comparsion of linear experiments. Metrika, 36(5): 291–298 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantine G M. Schur-convex functions on the spectra of graphs. Discrete Math, 45(2–3): 181–188 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Merkle M. Convexity, Schur-convexity and bounds for the gamma function involving the digamma functon. Rocky Mountain J Math, 28(3): 1053–1066 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hwang F K, Rothblum U G, Shepp L. Monotone optimal multipartitions using Schur convexity with respect to partial orders. SIAM J Discrete Math, 6(4): 533–547 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chan N N. Schur-convexity for A-optimal designs. J Math Anal Appl, 122(1): 1–6 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marshall A W, Olkin I. Inequalities: Theorey of Majorization and Its Applications. New York: Academic Press, 1979

    Google Scholar 

  15. Stolarsky K B. The power and generalized logarithmic means. Amer Math Monthly, 87(7): 545–548 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Qi F. A note on Schur-convexity of extended mean values. Rocky Mountain J Math, 35(5): 1787–1793 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qi F, Sándor J, Dragomir S S, et al. Notes on the Schur-convexity of the extended mean values. Taiwanese J Math, 9(3): 411–420 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Shi H N, Wu S H, Qi F. An alternative note on the Schur-convexity of the extended mean values. Math Inequal Appl, 9(2): 219–224 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Chu Y M, Zhang X M. Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave. J Math Kyoto Univ, 48(1): 229–238 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Sándor J. The Schur-convexity of Stolarsky and Gini means. Banach J Math Anal, 1(2): 212–215 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuMing Chu.

Additional information

This work was supported by National Natural Science Foundation of China (Grant Nos. 60850005, 10771195) and the Natural Science Foundation of Zhejiang Province (Grant Nos. D7080080, Y607128, Y7080185)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Y., Xia, W. Solution of an open problem for Schur convexity or concavity of the Gini mean values. Sci. China Ser. A-Math. 52, 2099–2106 (2009). https://doi.org/10.1007/s11425-009-0116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0116-5

Keywords

MSC(2000)

Navigation