Skip to main content
Log in

An Extension of Gröbner Basis Theory to Indexed Polynomials Without Eliminations

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In computer algebra, it remains to be challenging to establish general computational theories for determining the equivalence of indexed polynomials. In previous work, the author solved the equivalence determination problem for Riemann tensor polynomials by extending Gröbner basis theory. This paper extends the previous work to more general indexed polynomials that involve no eliminations of indices and functions, by the method of ST-restricted rings. A decomposed form of the Gröbner basis of the defining syzygy set in each ST-restricted ring is provided, and then the canonical form of an indexed polynomial proves to be the normal form with respect to the Gröbner basis in the ST-fundamental restricted ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J, Li H B, and Cao Y H, Simplification and normalization of indexed differentials involving coordinate transformation, Sci. China Ser. A, 2009, 52: 2266–2286.

    Article  MathSciNet  Google Scholar 

  2. Buchberger B, A critical-pair completion algorithm for finitely generated ideals in rings, Proc. Logic and Machines: Decision Problems and Complexity, LNCS, 1983, 171: 137–161.

    MathSciNet  Google Scholar 

  3. Stifter S, Computation of Gröbner bases over the integers and in general reduction rings, Master’s Thesis, Johannes Kepler University Linz, 1985.

    Google Scholar 

  4. Weispfenning V, Gröbner bases for polynomial ideals over commutative regular rings, Proc. EUROCAL’87, LNCS, 1987, 378: 336–347.

    MATH  Google Scholar 

  5. Kandri-Rody A and Kapur D, Computing a Gröbner basis of a polynomial ideal over an Euclidean domain, J. Symbolic Computation, 1988, 6: 37–57.

    Article  MathSciNet  Google Scholar 

  6. Kacem A H and Yengui I, Dynamical Gröbner bases over Dedekind rings, J. Algebra, 2010, 324: 12–24.

    Article  MathSciNet  Google Scholar 

  7. Gamanda M and Yengui I, Noether normalization theorem and dynamical Gröbner bases over Bezout domains of Krull dimension 1, J. Algebra, 2017, 492: 52–56.

    Article  MathSciNet  Google Scholar 

  8. Lassner W, Symbol representations of noncommutative algebras, EUROCAL’85, LNCS, 1985, 204: 99–115.

    MathSciNet  MATH  Google Scholar 

  9. Apel J and Lassner W, An extension of Buchberger’s algorithm and calculations in enveloping fields of Lie algebras, J. Symbolic Computation, 1988, 6: 361–370.

    Article  MathSciNet  Google Scholar 

  10. Kandri-Rody A and Weispfenning V, Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Computation, 1990, 9: 1–26.

    Article  MathSciNet  Google Scholar 

  11. Weispfenning V, Finite Gröbner bases in non-Noetherian skew polynomial rings, Proc. ISSAC’92, 1992, 329–334.

  12. Kredel H, Solvable Polynomial Rings, Verlag Shaker, Aachen, 1993.

    MATH  Google Scholar 

  13. Mora T, An introduction to commutative and noncommutative Gröbner bases, Theoret. Comput. Sci., 1994, 134: 131–173.

    Article  MathSciNet  Google Scholar 

  14. Reinert B, Computing Gröbner bases in monoid and group rings, Phd Thesis, Kaiserslautern University, Kaiserslautern, 1995.

    MATH  Google Scholar 

  15. Heyworth A, One-sided noncommutative Gröbner bases with applications to computing Green’s relations, J. Algebra, 2001, 242: 401–416.

    Article  MathSciNet  Google Scholar 

  16. Scala R L and Levandovskyy V, Letterplace ideals and non-commutative Gröbner bases, J. Symbolic Computation, 2009, 44: 1374–1393.

    Article  MathSciNet  Google Scholar 

  17. Scala R L and Levandovskyy V, Skew polynomial rings, Gröbner bases and the letterplace embedding of the free associative algebra, J. Symbolic Computation, 2013, 48: 110–131.

    Article  MathSciNet  Google Scholar 

  18. Gerritzen L, Tree polynomials and non-associative Gröbner bases, J. Symbolic Computation, 2006, 41: 297–316.

    Article  MathSciNet  Google Scholar 

  19. Rajaee S, Non-associative Gröbner bases, J. Symbolic Computation, 2006, 41: 887–904.

    Article  MathSciNet  Google Scholar 

  20. Cicalò S and De Graaf W, Non-associative Gröbner bases, finitely-presented Lie rings and the Engel condition, II, J. Symbolic Computation, 2009, 44: 786–800.

    Article  MathSciNet  Google Scholar 

  21. Liu J, Normalization in Riemann tensor polynomial ring, Journal of Systems Science and Complexity, 2018, 31(2): 569–580.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Liu.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 11701370.

This paper was recommended for publication by Editor LI Hongbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. An Extension of Gröbner Basis Theory to Indexed Polynomials Without Eliminations. J Syst Sci Complex 33, 1708–1718 (2020). https://doi.org/10.1007/s11424-020-9135-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9135-7

Keywords

Navigation