Skip to main content

Advertisement

Log in

Science education for sustainability, epistemological reflections and educational practices: from natural sciences to trans-disciplinarity

  • Published:
Cultural Studies of Science Education Aims and scope Submit manuscript

Abstract

In this three-part article we seek to establish connections between the emerging framework of sustainability science and the methodological basis of research and practice in science education in order to bring forth knowledge and competences for sustainability. The first and second parts deal with the implications of taking a sustainability view in relation to knowledge processes. The complexity, uncertainty and urgency of global environmental problems challenge the foundations of reductionist Western science. Within such debate, the proposal of sustainability science advocates for inter-disciplinary and inter-paradigmatic collaboration and it includes the requirements of post-normal science proposing a respectful dialogue between experts and non-experts in the construction of new scientific knowledge. Such a change of epistemology is rooted into participation, deliberation and the gathering of extended-facts where cultural framings and values are the hard components in the face of soft facts. A reflection on language and communication processes is thus the focus of knowledge practices and educational approaches aimed at sustainability. Language contains the roots of conceptual thinking (including scientific knowledge) and each culture and society are defined and limited by the language that is used to describe and act upon the world. Within a scenario of sustainability, a discussion of scientific language is in order to retrace the connections between language and culture, and to promote a holistic view based on pluralism and dialogue. Drawing on the linguistic reflection, the third part gives examples of teaching and learning situations involving prospective science teachers in action-research contexts: these activities are set out to promote linguistic integration and to introduce reflexive process into science learning. Discussion will focus on the methodological features of a learning process that is akin to a communal and emancipatory research process within a sustainability scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A thingified view of the world is currently exacerbated by the loss of nature and experiences of nature in concurrence with a transmissive mode of teaching. It is associated with a sense of exclusion from processes and events to which we are connected and a sense of alienation from topics and problems proposed in the classroom (Désautels and Larochelle 1998).

  2. In its original definition, an ecosystem is the entire set of biotic and abiotic components and their relationships found in a given area. An ecosystem is a dynamic and complex whole, a functional unit in stationary state, characterised by flows of matter and energy between its constitutive elements (Tansley 1935).

  3. In Italy, the two different levels of schooling are catered by two classes of teaching: A059 prepares for teaching in lower secondary school (12–15 years old) and it includes teaching of mathematics and science; A060 prepares for teaching in the upper secondary (15–19 years old) with specialization in the Natural Sciences.

  4. For the data presented in Fig. 7 we gratefully thank Dr. Daniela Marchetti, who developed a research on teaching/learning processes in a perspective of sustainability within her PhD thesis (unpublished).

  5. A059.

  6. For the data presented in this part we gratefully thank Dr. Alessandro Cerutti, who developed a research on teaching/learning processes about evolution as part of his Degree Thesis (unpublished work).

References

  • Aikenhead, G. S. (2003). STS education: A rose by any other name. In R. Cross (Ed.), A vision for science education. Responding to the work of Peter Fensham (pp. 59–75). New York: Routledge Falmer.

    Google Scholar 

  • Alberts, B. (2008). A scientific approach to policy. Science, 322, 1435.

    Article  Google Scholar 

  • Alles, M. (2008). Governance in the age of unknown unknowns. International Journal of Disclosure and Governance, 6, 85–88.

    Article  Google Scholar 

  • Alters, B. J., & Nelson, C. E. (2002). Perspective: Teaching evolution in Higher Education. Evolution, 56, 1891–1901.

    Google Scholar 

  • Angelotti, M., Perazzone, A., Tonon, M., & Bertolino, F. (2009). Educating the educators. Primary teacher education. In D. Gray, L. Colucci-Gray, & E. Camino (Eds.), Science, society and sustainability. Education and empowerment for an uncertain world. New York: Routledge.

    Google Scholar 

  • Arcà, M. (1992). Flussi di informazione e flussi di materia. In E. Ferrero & E. Camino (Eds.), Atti dei seminari di didattica delle Scienze Naturali (pp. 28–40). Torino: CLU.

    Google Scholar 

  • Arcà, M. (1993). La cultura scientifica a scuola. Milano: Franco Angeli.

    Google Scholar 

  • Bagnoli, M. (2009). Beyond the standard interview: the use of graphic elicitation and arts-based methods. Working paper 12, Realities, Manchester: ESRC National Centre for Research Methods.

  • Barbiero, G. (2002). Il dna leggero. Appunti per una didattica della genetica post-genomica. Naturalmente, 15, 14–19.

    Google Scholar 

  • Barbiero, G. (2005). Il principio di precauzione nella crisi dell’impianto epistemologico dell’ingegneria genetica. Quaderni del CRASL–Centro di Ricerche per l’Ambiente e lo Sviluppo sostenibile della Lombardia, Università Cattolica del Sacro Cuore, 18 pp.

  • Bateson, G. (1972). Steps to an ecology of mind. San Francisco: Chandler.

    Google Scholar 

  • Bateson, G. (1980). Mind and nature: a necessary unity. New York: Bantam Books.

    Google Scholar 

  • Benessia, A., & Barbiero, G. (2012). Safety, security and quality: Lessons from GMO’s risk assessment. In: M. G. Tyshenko & T. Oraby (Eds). Risk assessment—book 2. InTech Open Access, ISBN 979-953-307-894-5 (submitted).

  • Berkes, F., & Berkes, M. K. (2009). Ecological complexity, fuzzy logic, and holism in indigenous knowledge. Futures, 41, 6–12.

    Article  Google Scholar 

  • Bertolino, F., & Perazzone, A. (2005). La città sottovetro… Ecologia, etica, educazione alla sostenibilità. In E. Falchetti & S. Caravita (Eds.), Per una ecologia dell’educazione ambientale. Torino: Edizione Scholé Futuro.

    Google Scholar 

  • Bloom, J. W., & Volk, T. (2007). The use of meta-patterns for research into complex systems of teaching, learning, and schooling, Part II: Applications. Complicity: The International Journal of Complexity and Education, 4, 45–68.

    Google Scholar 

  • Bloor, D. (1971). Two paradigms for scientific knowledge?. Science Studies, 1, 101–115.

    Article  Google Scholar 

  • Bonnett, M. (2006). Education for sustainability as a frame of mind, Environmental Education Research, 12, 265–276.

    Google Scholar 

  • Bruner, J. (1991). The narrative construction of reality. Critical Inquiry, 18, 1–21.

    Article  Google Scholar 

  • Bryce, T. G. K. (2010). Sardonic Science? The resistance to more humanistic forms of science education. Cultural Studies of Science Education, 5, 591–612.

    Article  Google Scholar 

  • Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R., et al. (2010). Global biodiversity: Indicators of recent declines. Science, 328, 1164.

    Article  Google Scholar 

  • Camino, E., Perazzone, A., Bertolino, F., & Vellano, C. (2002). A comparative analysis of various teaching approaches and different learning situations concerning the core concept of “ecosystem” in the Natural Sciences education. In Proceedings of the 2nd international conference on science education, Nicosia.

  • Capra, F. (2002). The hidden connections. New York: Doubleday.

    Google Scholar 

  • Cartwright, N. (2008). The dappled world: A study of the boundaries of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cerutti A. (2007). La prospettiva evoluzionistica nella formazione scientifica. La proposta della laurea magistrale EDEN (Evoluzione e Diversità Dei Sistemi Naturali) di Torino. Unpublished Master’s thesis.

  • Chamany, K., Allen, D., & Tanner, K. (2008). Making biology learning relevant to students: Integrating people, history, and context into college biology teaching. CBE Life Sciences Education, 7, 267–278.

    Article  Google Scholar 

  • Chambers, R. (1997). Whose reality counts? Putting the first last. London: Intermediate Technology Publications.

    Google Scholar 

  • Chinn, P. W. U., Hand, B., & Yore, L. D. (2008). Culture, language, knowledge about nature and naturally occurring events, and science literacy for all: She says, he says, they say. Educational Studies in Language and Literature, 8, 149–171.

    Google Scholar 

  • Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clark, W. C., Crutzen, P. J., & Schellnhuber, H. J. (2005). Science for Global Sustainability: Toward a new paradigm. CID Working Paper No. 120. Cambridge, MA: Science, Environment and Development Group, Center for International Development, Harvard University.

  • Colucci-Gray, L., Camino, E., Marchetti, D., & Angelotti, M. (2010). Flows of energy and matter cycles in the ecosystems: a conceptual tool to deal with issues of global sustainability. Paper presented at the 8th conference of European researchers in didactics of biology (ERIDOB), Braga.

  • Corn, M. L. (1993). Ecosystems, biomes, and watersheds: definitions and use. CRS report for congress, Washington DC: National Council for Science and the Environment. Retrieved September 16 2010, from http://ncseonline.org/NLE/CRSreports/Biodiversity/biodv-6.cfm.

  • Cresswell, J. (1998). Qualitative inquiry and research design; choosing among five traditions. London: Sage Publications.

    Google Scholar 

  • Crick, F. (1958). Central dogma of molecular biology. Nature, 227, 61–63.

    Google Scholar 

  • Dennett, D. (2006). Breaking the spell: Religion as a natural phenomenon. London: Penguin Books.

    Google Scholar 

  • Denzin, N. (1989). Interpretive interactionism. Newberry Park, CA: Sage.

    Google Scholar 

  • Department for Innovation, Universities and Skills (DIUS) (2008). Science and innovation investment framework, 2004-2014. Available at: http://www.bis.gov.uk/assets/biscore/corporate/migratedD/publications/2/2008_economic_impact_report.

  • Désautels, J., & Larochelle, M. (1998). The epistemology of students: The “thingified” Nature of Scientific Knowledge’. In B. Fraser & K. Tobin (Eds.), International handbook of science education (pp. 115–126). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Dodman, M. (2004). Sapere linguistico e sapere scientifico-tecnologico-professionale, Insegnare, 5, 37–42. Roma: Editoriale Ciid.

  • Dodman, M. (2007). Competenze linguistico-comunicative nella costruzione del sapere matematico. In B. D’Amore & S. Sbaragli (Eds.), Allievi, insegnanti, sapere: La sfida della didattica della matematica. Edizioni Pitagora: Bologna.

    Google Scholar 

  • Dodman, M., Camino, E., & Barbiero, G. (2008). Language and science: Products and processes of signification in the educational dialogue. Journal of Science Communication, 7, 1–8.

    Google Scholar 

  • Doménech, J., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching of energy issues: A debate proposal for a global reorientation. Science & Education, 16, 43–64.

    Article  Google Scholar 

  • Dunn, M., Greenhill, S. J., Levinson, S. C., & Gray, R. D. (2011). Evolved structure of language shows lineage-specific trends in word-order universals. Nature. Advance online publication. doi:10.1038/nature09923.

  • Editorial (2011). Universal truths. Nature 472, 136.

  • Ekborg, M. (2003). How student teachers use scientific conceptions to discuss a complex environmental issue. Journal of Biological Education, 37, 126–132.

    Article  Google Scholar 

  • Eldredge, N., & Gould, S. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman, Cooper & Co.

    Google Scholar 

  • Ellis, R. J. (2010). Biochemistry: Tackling unintelligent design. Nature, 463, 164–165.

    Article  Google Scholar 

  • Elser, J., & Bennet, E. (2011). A broken biogeochemical cycle. Nature, 478, 29–31.

    Article  Google Scholar 

  • Enquist, B. J., & Stark, S. C. (2007). Follow Thompson’s map to turn biology from a science into a Science. Nature, 446, 611.

    Article  Google Scholar 

  • Fischer-Kowalski, M., & Amann, C. (2001). Beyond IPAT and Kuznets curves: Globalization as a vital factor in analysing the environmental impact of socio-economic metabolism. Population & Environnent, 23, 7–47.

    Article  Google Scholar 

  • Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., Walzer, B., Bengtsson, J., Berkes, F., Colding, J., Danell, K., Falkenmark, M., Gordon, L., Kasperson, R., Kautsky, N., Kinzig, A., Levin, S., Mäler, K.-G., Moberg, F., Ohlsson, L., Olsson, P., Ostrom, E., Reid, W., Rockström, J., Savenije, H., & Svedin, U. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. Scientific Background Paper on Resilience for the process of The World Summit on Sustainable Development on behalf of The Environmental Advisory Council to the Swedish Government. Retrieved September 20, 2010 from http://www.sou.gov.se/mvb/pdf/resiliens.pdf.

  • Fox Keller, E. (1995). Refiguring life: Metaphors of twentieth-century biology. New York: Columbia University Press.

    Google Scholar 

  • Fry, W. (1963). Sweet madness: A study of humour. Palo Alto, CA: Pacific Books Publishers.

    Book  Google Scholar 

  • Funtowicz, S. O. (2001). Post-normal science. Science and governance under conditions of complexity. Notizie di Politeia XVII, 62, 77–85.

    Google Scholar 

  • Funtowicz, S. O., & Ravetz, J. R. (1999). Post-normal science: An insight now maturing. Futures, 31, 641–646.

    Article  Google Scholar 

  • Futuyma, D. J. (1995). The uses of evolutionary biology. Science, 267, 41–42.

    Article  Google Scholar 

  • Futuyma, D. J., & Meagher, T. R. (2001). Evolution, science and society: Evolutionary biology and the national research agenda. California Journal of Science Education, 1, 19–32.

    Google Scholar 

  • Gagliardi, R. (1989). Le rappresentazioni mentali degli studenti e i concetti strutturanti che ne permettono la trasformazione. In E. Ferrero & E. Camino (Eds.), Atti dei Seminari di Didattica delle Scienze Biologiche. Torino: CLU.

    Google Scholar 

  • Gagliardi, R., Bernardini Mosconi, P., & Bocchiola, M. T. (1993). Il maestro, il bambino e le scienze. Pavia: Edizioni Antares.

    Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in reason and language. Cognitive Neuropsychology, 22, 455–479.

    Article  Google Scholar 

  • Gallopìn, G. (2004 October). Sustainable development: epistemological challenges to science and technology. Paper presented at the workshop sustainable development: Epistemological challenges to science and technology, Santiago de Chile.

  • Gergen, K. J. (1995). Social construction and the educational process. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 17–39). Hillsdale, New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Giampietro, M., & Mayumi, K. (2000). Multiple-scale integrated assessments of societal metabolism: Integrating biophysical and economic representations across scales population and environment. Journal of Interdisciplinary Studies, 22, 109–153.

    Google Scholar 

  • Giampietro, M., Mayumi, K., & Martinez-Alier, J. (2000). Introduction to the special issues on societal metabolism: Blending new insights from complex system thinking with old insights from biophysical analyses of the economic process. Population and Environment, 22, 97–108.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Giordan, A. Y., Girault, Y., & Clément, P. (1994). Conceptions et connaissances. Lausanne: Peter Lang Verlag.

    Google Scholar 

  • Global footprint network (2011) What is earth overshoot day? Retrieved April 20, 2011, from http://www.footprintnetwork.org/en/index.php/GFN/page/earth_overshoot_day/.

  • Godemann, J. (2008). Knowledge integration: A key challenge for transdisciplinary cooperation. Environmental Education Research, 14, 625–641.

    Article  Google Scholar 

  • Goodnough, K. (2003). Facilitating action research in the context of science education: Reflections of a university researcher. Educational Action Research, 11, 41–64.

    Article  Google Scholar 

  • Goodwin, B. (2007). Nature’s due: Healing our fragmented culture. London: Floris Books.

    Google Scholar 

  • Guimarães Pereira, A., & Funtowicz, S. (2006). Knowledge representation and mediation for transdisciplinary frameworks: Tools to inform debates, dialogues & deliberations. International Journal of Transdisciplinary Research, 1, 34–50.

    Google Scholar 

  • Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems. New York: Island Press.

    Google Scholar 

  • Halliday, M. A. K. (2004). The language of science. (Collected works of M.A. K. Halliday edited by J. J. Webster). London: Continuum.

  • Harding, S. (2008). Sciences from below: Feminisms, postcolonialities and modernities. London: Duke University Press.

    Google Scholar 

  • Hing, L. S. (1993). Distinctive features of Chinese and Western thought patterns as seen in Mandarin and Chinese. Guidelines, 15, 38–44.

    Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (1997). The ants. Berlin: Springer and Harvard University Press.

    Google Scholar 

  • Howe, A. C. (1996). Development of science concepts within a Vygotskian framework. Science Education, 80, 35–51.

    Article  Google Scholar 

  • Ingold, T. (2010). Bringing things to life: Creative entanglements in a world of materials. Realities, working paper 15. Retrieved September 21, 2010 from http://www.socialsciences.manchester.ac.uk/realities/publications/workingpapers.

  • Ingold, T. (2011). Culture on the ground: The world perceived through the feet. In T. Ingold (Ed.), Being alive: Essays on movement, knowledge and description (pp. 33–50). London: Routledge.

    Google Scholar 

  • International Food Policy Research Institute (IFPRI) (2010). Global Hunger Index. Retrieved March 10, 2011, from http://www.ifpri.org/publication/2010-global-hunger-index.

  • Jablonka, E., & Lamb, M. L. (2005). Evolution in four dimensions. Cambridge, MA: MIT Press.

    Google Scholar 

  • James, C. (2010). Global status of commercialized biotech/GM crops: 2010. ISAA Briefing n. 42. ISAAA: Ithaca, NY.

  • Jasanoff, S. (2007). Technologies of humility. Nature, 450, 1.

    Article  Google Scholar 

  • Jasanoff, S. (2010). A new climate for society. Theory, culture & Society, 27, 1–21.

    Article  Google Scholar 

  • Jones, A. (2001). Eating oil. Food supply in a changing climate. London: Sustain/Elm Farm Research Centre.

    Google Scholar 

  • Kay, J., & Schneider, E. D. (1994). Embracing complexity, the challenge of the ecosystem approach. Alternatives, 20, 32–38.

    Google Scholar 

  • Keith, D. W., Parson, E., & Morgan, M. G. (2010). Research on global sun block needed now. Nature, 463, 426–427.

    Article  Google Scholar 

  • Kemmis, S. (2006). Participatory action research and the public sphere. Educational Action Research, 14, 459–476.

    Article  Google Scholar 

  • Kim, Y. (1998). Transdisciplinarity. In Transdisciplinarity: Stimulating Synergies, Integrating Knowledge (III-IV). Paris: UNESCO.

  • Kitchen, J., & Stevens, D. (2008). Action research in teacher education: Two teacher-educators practice action research as they introduce action research to reservice teachers. Action Research, 6, 7–28.

    Article  Google Scholar 

  • Klymkowsky, M. W., & Garvin-Doxas, K. (2008). Recognizing student misconceptions through Ed’s tools and the biology concept inventory. PLOS Biology, 6, 14–17.

    Article  Google Scholar 

  • Konopka, A. K. (2002). Grand metaphors of biology in the genome era. Computers and Chemistry, 26, 397–401.

    Article  Google Scholar 

  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. London: Basic Books.

    Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. PNAS, 108, 3465–3472.

    Article  Google Scholar 

  • Larson, B. (2011). Metaphors for environmental sustainability. Redefining our relationship with nature. London: Yale University Press.

    Google Scholar 

  • Latour, B. (2007). A plea for earthly sciences. Keynote lecture for the annual meeting of the British Sociological Association, East London. Retrieved September 20, 2010 from http://www.bruno-latour.fr/articles/article/102-BSA-GB.pdf.

  • Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstor, S., et al. (2008). Tipping elements in the Earth’s climate system. PNAS, 105, 1786–1793.

    Article  Google Scholar 

  • Lenton, T. M., & van Oijen, M. (2002). Gaia as a complex adaptive system. Philosophical Transactions of the Royal Society, 357, 683–695.

    Article  Google Scholar 

  • Lewis, J., & Leach, J. (2006). Discussion of socio-scientific Issues: The role of science knowledge. International Journal of Science Education, 28, 1267–1287.

    Article  Google Scholar 

  • Liberatore, A., & Funtowicz, S. (2003). Democratising expertise, expertising democracy: What does this mean, and why bother? Science and Public Policy, 30, 146–150.

    Article  Google Scholar 

  • Lindberg, D. (1976). Theories of vision from Al-Kindi to Kepler. Chicago: University of Chicago Press.

    Google Scholar 

  • Lövbrand, E., Stripple, J., & Wiman, B. (2009). Earth system govern mentality: Reflections on science in the anthropocene. Global Environmental change, 19, 7–13.

    Article  Google Scholar 

  • Lovelock, J. E. (1987). Gaia a new look at life on earth. Oxford: Oxford University Press.

    Google Scholar 

  • MacCallum, C. J. (2007). Does medicine without evolution make sense? Public Library of Science, 5, 679–680.

    Google Scholar 

  • Marchetti, D. (2008). Formazione alla sostenibilità dei formatori. Verso il superamento della frammentarietà delle conoscenze scientifiche. University of Turin, Unpublished PhD thesis.

  • Margulis, L. (1998). Symbiotic planet: A new look at evolution. London: Basic Books.

    Google Scholar 

  • Martinez-Alier, J., Kallis, G., Veuthey, S., Walter, M., & Temper, L. (2010). Social metabolism, ecological distribution conflicts, and valuation languages. Ecological Economics, 70, 153–158.

    Article  Google Scholar 

  • Maturana, H., & Varela, F. (1987). The tree of knowledge. New York: Shambala.

    Google Scholar 

  • McNiff, J., Lomax, P., & Whitehead, J. (1996). You and your action research project. New York: Routledge.

    Book  Google Scholar 

  • Miller, T. R., Baird, T. D., Littlefield, C. M., Kofinas, G., Chapin, F., I. I. I., & Redman, C. L. (2008). Epistemological pluralism: Reorganizing interdisciplinary research. Ecology and Society, 13, 46.

    Google Scholar 

  • Mobjörk, M. (2010). Consulting versus participatory transdisciplinarity: A refined classification of transdisciplinary research. Futures, 42, 866–873.

    Article  Google Scholar 

  • Morin, E. (1999). Reforme de pensee, transdisciplinarite′, reforme de l’universite′, Address at international congress Quelle universite′ pour demain? Vers une evolution transdisciplinaire de l’universite′. Locarno. 30 April–2 May1997. CIRET-UNESCO: Evolution transdisciplinaire de l’universite′, Bulletin Interactif du CIRET, 9–10 (1997) at http://perso.club-internet.fr/nicol/ciret/.

  • Myin, E., & O’Regan, J. K. (2002). Perceptual consciousness, access to modality and skill theories; a way to naturalise phenomenology?. Journal of Consciousness Studies, 9, 27–45.

    Google Scholar 

  • Nicolescu, B. (1996). La transdisciplinarite′: manifeste. Paris: Editions du Rocher. (English Trans. K-C. Voss, Manifesto of Transdisciplinarity. New York: State University of New York Press, 2001).

  • Noffke, S. E. (2009). Revisiting the professional, personal, and political dimensions of action research. In S. Noffke & B. Somekh (Eds.), The SAGE handbook of educational action-research (pp. 6–23). London: Sage.

    Google Scholar 

  • Odum, E. P. (1988). Basi di ecologia. Padova: Piccin.

    Google Scholar 

  • Odum, E. P. (1997). Ecology: A bridge between science and society. Sunderland, MA: Sinauer Associates.

  • Orr, D. (1991). What is education for? Six myths about the foundations of modern education, and six new principles to replace them. Context, 27, p. 51. Retrieved June 15, 2010 from http://www.context.org/ICLIB/IC27/Orr.htm.

  • Osberg, D. C., & Biesta, G. J. J. (2007). Beyond presence: Epistemological and pedagogical implications of ‘strong’ emergence. Interchange, 38, 31–51.

    Article  Google Scholar 

  • Ostergaard, E., Dahlin, B., & Hugo, A. (2008). Doing phenomenology in science education: A research review. Studies in Science Education, 44, 93–121.

    Article  Google Scholar 

  • Perazzone, A. (2004). Verticale si… ma come la tela del ragno! Le Scienze Naturali nella scuola, Anno XIII. In: Proceedeings of the national conference “Una visione del mondo”, Torino 23–27, marzo 2004, pp. 125–128.

  • Post, D. M., Doyle, M. W., Sabo, J. L., & Finlay, J. C. (2007). The problem of boundaries in defining ecosystems: A potential landmine for uniting geomorphology and ecology. Geomorphology, 89, 111–126.

    Article  Google Scholar 

  • Primavesi, A. (2000). Sacred gaia: Holistic theology and Earth system science. New York: Routledge.

    Book  Google Scholar 

  • Princen, T. (2010). Speaking of sustainability: The potential of metaphor. Sustainability: Science Practice & Policy, 6, 60–65.

    Google Scholar 

  • Quale, A. (2002). The role of metaphor in scientific epistemology: A constructivist perspective and consequences for science education. Science & Education, 11, 443–457.

    Article  Google Scholar 

  • Ramadier, T. (2004). Transdisciplinarity and its challenges: The case of urban studies. Futures, 36, 423–439.

    Article  Google Scholar 

  • Reid, W. V., Berkes, F., Wilbanks, T., & Capistrano, D. (2006). Bridging scales and knowledge systems. Washington, DC: Island Press.

    Google Scholar 

  • Reiss, M. (2010). Science and religion: Implications for science educators. Cultural Studies of Science Education, 5, 91–101.

    Article  Google Scholar 

  • Resnick, L. B., Levine, J., & Teasley, S. D. (Eds.). (1991). Perspectives on socially shared cognition. Washington, DC: American Psychological Association.

    Google Scholar 

  • Roth, W.-M., & Lee, S. (2004). Science education as/for participation in the community. Science Education, 88, 263–291.

    Article  Google Scholar 

  • Sachs, W. (1999). Planet dialectics: Explorations in environment and development. London: Zed Books.

  • Sarewitz, D. (2004). How science makes environmental controversies worse. Environmental Science & Policy, 7, 385–403.

    Article  Google Scholar 

  • Sarewitz, D. (2010). Worldview: Not by experts alone. Nature, 466, 688.

    Article  Google Scholar 

  • Scott, P., Mortimer, E., & Amettler, J. (2011). Pedagogical link-making: A fundamental aspect of teaching and learning scientific conceptual knowledge. Studies in Science Education, 47, 3–36.

    Article  Google Scholar 

  • Seiler, G., & Abraham, A. (2009). Hidden wor(l)ds in science class: Conscientization and politicization in science education research and practice. Cultural Studies of Science Education, 4, 739–753.

    Article  Google Scholar 

  • Sen, A. (1999). Development as freedom. Oxford: Oxford University Press.

    Google Scholar 

  • Shallcross, T., Spink, E., Stephenson, P., & Warwick, P. (2002). How primary trainee teachers perceive the development of their own scientific knowledge: Links between confidence, content and competence? International Journal of Science Education, 24, 1293–1312.

    Article  Google Scholar 

  • Silvermann, D. (2000). Doing qualitative research: A practical handbook. London: Sage.

    Google Scholar 

  • Smil, V. (2008). Energy in nature and in society: General energetics of complex systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sterling, S. (2001). Sustainable education, re-visioning learning and change. Totnes: Green Books.

    Google Scholar 

  • Sterling, S. (2009). Sustainable education. In D. Gray, L. Colucci-Gray, & E. Camino (Eds.), Science, society and sustainability (pp. 105–118). New York: Routledge.

    Google Scholar 

  • Sumara, D., & Davis, B. (2009). Complexity theory and action-research. In S. Noffke & B. Somekh (Eds.), The SAGE handbook of educational action-research (pp. 358–369). London: Sage.

    Google Scholar 

  • Tansley, A. G. (1935). The use and abuse of vegetational terms and concepts. Ecology, 16, 284–307.

    Article  Google Scholar 

  • Thompson-Klein, M. (2004). Prospects for trans-disciplinarily. Futures, 36, 515–526.

    Article  Google Scholar 

  • Tomashow, M. (1996). Ecological identity: Becoming a reflective environmentalist. Cambridge, MA: The MIT Press.

  • Torbert, W. R. (1981). Why educational research has been so uneducational: The case for a new model of social science based on collaborative inquiry. In P. Reason & J. Rowan (Eds.), Human inquiry (pp. 141–152). New York: Wiley.

    Google Scholar 

  • Trenbert, K. E. (2009). An imperative for climate change planning: Tracking Earth’s global energy. Current Opinion in Environmental Sustainability, 1, 19–27.

    Article  Google Scholar 

  • Trumper, R. (1997). Applying conceptual conflict strategies in the learning of the energy concept. Research in science and technological education, 15, 5–18.

    Article  Google Scholar 

  • van Der Sluijs, J., Douguet, J.-M., O’Connor, M., Guimarães Pereira, A., Corral Quintana, S., Maxim, L., et al. (2008). Qualité de la connaissance dans un processus délibératif. Natures Sciences Sociétés, 16, 265–273.

    Article  Google Scholar 

  • van Eijck, M., & Roth, W.-M. (2007). Keeping the local: Recalibrating the status of science and Traditional Ecological Knowledge (TEK) in education. Science Education, 91, 926–947.

    Article  Google Scholar 

  • van Meter, P., & Stevens, R. J. (2000). The role of theory in the study of peer collaboration. Journal of Experimental Education, 69, 113–127.

    Article  Google Scholar 

  • Volk, T. (1998). Gaia’s body: Toward a physiology of Earth. New York: Springer.

    Book  Google Scholar 

  • Voloshinov, V. N. (1973). Marxism and the philosophy of language. (Trans. Ladislav Matejka and I. R. Titunik). New York: Seminar.

  • Weber, S. (2008). Visual images in research. In: J. Gary Knowles & Ardra, L. Cole (Eds.), Handbook of the arts in qualitative research (pp. 41–55). London: Sage.

  • Whitfield, J. (2008). Biological theory: Postmodern evolution? Nature, 455, 281–284.

    Article  Google Scholar 

  • Wilk, R. (2010). Consumption embedded in culture and language: Implications for finding sustainability. Sustainability: Science, Practice & Policy, 6, 38–48.

    Google Scholar 

  • Wittgenstein, L. (1961). Tractatus logico-philosophicus. (Trans. D.F. Pears and B. F. McGuinness.) London: Routledge and Kegan Paul.

  • World Hunger Education Service Associates (WHESA) (2011). World hunger and poverty facts and statistics. Retrieved April 02, 2011, from http://www.worldhunger.org/articles/Learn/world%20hunger%20facts%202002.htm.

  • Yore, L. D. (2008). Science literacy for all students: Language, culture, and knowledge about nature and naturally occurring events. Educational Studies in Language and Literature, 8, 5–21.

    Google Scholar 

  • Ziegler, R., & Ott, K. (2011). The quality of sustainability science: A philosophical perspective. Sustainability: Science, Practice & Policy, 7, 31–44.

    Google Scholar 

  • Zoller, U., & Scholz, R. W. (2004). The HOCS paradigm shift from disciplinary knowledge (LOCS) to interdisciplinary evaluative, system thinking (HOCS): What should it take in science–technology–environment–society oriented courses, curricula and assessment? Water Science and Technology, 49, 27–36.

    Google Scholar 

Download references

Acknowledgments

Research partly financed by MIUR and by Assessorato Ambiente, Regione Piemonte (PIES 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Colucci-Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colucci-Gray, L., Perazzone, A., Dodman, M. et al. Science education for sustainability, epistemological reflections and educational practices: from natural sciences to trans-disciplinarity. Cult Stud of Sci Educ 8, 127–183 (2013). https://doi.org/10.1007/s11422-012-9405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11422-012-9405-3

Keywords

Navigation