Skip to main content
Log in

Absolute configuration of the synthetic cannabinoid MDMB-CHMICA with its chemical characteristics in illegal products

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

A seized sample of the synthetic cannabinoid MDMB-CHMICA was studied by means of vibrational and electronic circular dichroism spectroscopy and found to have (S)-configuration by comparison of the experimental spectra with density functional theory calculations. We were able to additionally confirm the absolute configuration was additionally confirmed using X-ray crystallography. Furthermore, the title compound was extracted from five commercially available “Spice-like” herbal mixtures. The extracts were all found to have the same absolute configuration as the seized sample and all analyzed samples were found to be of very high optical purity as judged by chiral high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837

    Article  PubMed  Google Scholar 

  2. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Haishima Y, Goda Y (2009) Identification of a cannabinoid analog as a new type of designer drug in a herbal product. Chem Pharm Bull 57:439–441

    Article  CAS  PubMed  Google Scholar 

  3. EMCDDA (2015) European drug report 2015: trends and developments. http://www.emcdda.europa.eu/system/files/publications/974/TDAT15001ENN.pdf. Accessed January 2016

  4. Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108:534–544

    Article  PubMed  Google Scholar 

  5. Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2014) Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal 6:832–839

    Article  CAS  PubMed  Google Scholar 

  6. EMCDDA (2015) EMCDDA––Europol 2014 annual report on the implementation of council decision 2005/387/JHA. Implementation reports. http://www.emcdda.europa.eu/system/files/publications/1018/TDAN15001ENN.pdf. Accessed January 2016

  7. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y, Morzherin Y, Lebedev AT (2015) Identification and analytical characteristics of synthetic cannabinoids with an indazole-3-carboxamide structure bearing a N-1-methoxycarbonylalkyl group. Anal Bioanal Chem 407:6301–6315

    Article  CAS  PubMed  Google Scholar 

  8. Langer N, Lindigkeit R, Schiebel H-M, Papke U, Ernst L, Beuerle T (2016) Identification and quantification of synthetic cannabinoids in “spice-like” herbal mixtures: update of the German situation for the spring of 2015. Forensic Toxicol 34:94–107

    Article  CAS  Google Scholar 

  9. Franz F, Schwörer N, Angerer V, Moosmann B, Auwärter V (2015) Metabolism and urine analysis of the new synthetic cannabinoid MDMB-CHMICA. Toxichem Krimtech 82:192–198

    Google Scholar 

  10. Westin AA, Frost J, Brede WR, Gundersen POM, Einvik S, Aarset H, Slørdal L (2016) Sudden cardiac death following use of the synthetic cannabinoid MDMB-CHMICA. J Anal Toxicol 40:86–87

    PubMed  Google Scholar 

  11. Angerer V, Franz F, Schwarze B, Moosmann B, Auwärter V (2016) Reply to ‘sudden cardiac death following use of the synthetic cannabinoid MDMB-CHMICA’. J Anal Toxicol 40:240–242

    Article  PubMed  Google Scholar 

  12. UNODC (2015) Global SMART update––synthetic cannabinoids: key facts about the largest and most dynamic group of NPS. https://www.unodc.org/documents/scientific/Global_SMART_Update_13_web.pdf. Accessed January 2016

  13. BtMÄndV, implied in German narcotics law (BtMG) since November 21st, 2015, BGBl. 1 S. 1992

  14. Pütz M, Schneiders S, Auwärter V, Münster-Müller S, Scheid N (2015) The EU-project ′SPICE-profiling′ (2015–2017)––objectives and results of a first study on Spice products containing 5F-PB-22. Toxichem Krimtech 82:273–283

    Google Scholar 

  15. Cody JT (1992) Determination of methamphetamine enantiomer ratios in urine by gas chromatography–mass spectrometry. J Chromatogr 580:77–95

    Article  CAS  Google Scholar 

  16. Kristensen K, Christensen CB, Christrup LL (1994) The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci 56:45–50

    Article  Google Scholar 

  17. Pop E (2000) Nonpsychotropic synthetic cannabinoids. Curr Pharm Design 6:1347–1359

    Article  CAS  PubMed  Google Scholar 

  18. Kiyoi T, York M, Francis S, Edwards D, Walker G, Houghton AK, Cottney JE, Baker J, Adam JM (2010) Design, synthesis, and structure–activity relationship study of conformationally constrained analogs of indole-3-carboxamides as novel CB1 cannabinoid receptor agonists. Bioorg Med Chem Lett 20:4918–4921

    Article  CAS  PubMed  Google Scholar 

  19. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29:2176–2179

    Article  CAS  Google Scholar 

  20. Stewart JP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  26. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  28. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem Phys Lett 252:211–220

    Article  CAS  Google Scholar 

  29. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struc-Theochem 464:211–226

    Article  CAS  Google Scholar 

  30. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  31. Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G (2013) SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25:243–249

    Article  CAS  PubMed  Google Scholar 

  32. Bruhn T, Schaumlöffel A, Hemberger Y (2015) SpecDis, Version 1.65. University of Würzburg, Würzburg

    Google Scholar 

  33. Sheldrick G (2015) SHELX––integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8

    Article  Google Scholar 

  34. Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Pol Besenius (Mainz) for granting access to the ECD spectrometer, the Zentrum für Datenverarbeitung (Mainz) for access to the MOGON supercomputer, and Dr. Serge Schneider, Laboratoire National de Santé, Luxembourg, for arranging the transfer of samples of an MDMB-CHMICA customs seizure to BKA. S.P. is grateful for a scholarship from the Fonds der Chemischen Industrie. This work was performed within the research project ‘‘SPICE-Profiling’’ (agreement no. JUST/2013/ISEC/DRUGS/AG/ISEC/4000006421) funded by the European Union′s program ‘‘Fight Against and Prevention of Crime’’ (ISEC). The contents of the paper are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pütz.

Ethics declarations

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

L. Andernach and S. Pusch contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andernach, L., Pusch, S., Weber, C. et al. Absolute configuration of the synthetic cannabinoid MDMB-CHMICA with its chemical characteristics in illegal products. Forensic Toxicol 34, 344–352 (2016). https://doi.org/10.1007/s11419-016-0321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-016-0321-1

Keywords

Navigation